Sort by:
Page 140 of 2432424 results

A multiregional multimodal machine learning model for predicting outcome of surgery for symptomatic hemorrhagic brainstem cavernous malformations.

Dong X, Gui H, Quan K, Li Z, Xiao Y, Zhou J, Zhao Y, Wang D, Liu M, Duan H, Yang S, Lin X, Dong J, Wang L, Ma Y, Zhu W

pubmed logopapersJul 1 2025
Given that resection of brainstem cavernous malformations (BSCMs) ends hemorrhaging but carries a high risk of neurological deficits, it is necessary to develop and validate a model predicting surgical outcomes. This study aimed to construct a BSCM surgery outcome prediction model based on clinical characteristics and T2-weighted MRI-based radiomics. Two separate cohorts of patients undergoing BSCM resection were included as discovery and validation sets. Patient characteristics and imaging data were analyzed. An unfavorable outcome was defined as a modified Rankin Scale score > 2 at the 12-month follow-up. Image features were extracted from regions of interest within lesions and adjacent brainstem. A nomogram was constructed using the risk score from the optimal model. The discovery and validation sets comprised 218 and 49 patients, respectively (mean age 40 ± 14 years, 127 females); 63 patients in the discovery set and 35 in the validation set had an unfavorable outcome. The eXtreme Gradient Boosting imaging model with selected radiomics features achieved the best performance (area under the receiver operating characteristic curve [AUC] 0.82). Patients were stratified into high- and low-risk groups based on risk scores computed from this model (optimal cutoff 0.37). The final integrative multimodal prognostic model attained an AUC of 0.90, surpassing both the imaging and clinical models alone. Inclusion of BSCM and brainstem subregion imaging data in machine learning models yielded significant predictive capability for unfavorable postoperative outcomes. The integration of specific clinical features enhanced prediction accuracy.

Does alignment alone predict mechanical complications after adult spinal deformity surgery? A machine learning comparison of alignment, bone quality, and soft tissue.

Sundrani S, Doss DJ, Johnson GW, Jain H, Zakieh O, Wegner AM, Lugo-Pico JG, Abtahi AM, Stephens BF, Zuckerman SL

pubmed logopapersJul 1 2025
Mechanical complications are a vexing occurrence after adult spinal deformity (ASD) surgery. While achieving ideal spinal alignment in ASD surgery is critical, alignment alone may not fully explain all mechanical complications. The authors sought to determine which combination of inputs produced the most sensitive and specific machine learning model to predict mechanical complications using postoperative alignment, bone quality, and soft tissue data. A retrospective cohort study was performed in patients undergoing ASD surgery from 2009 to 2021. Inclusion criteria were a fusion ≥ 5 levels, sagittal/coronal deformity, and at least 2 years of follow-up. The primary exposure variables were 1) alignment, evaluated in both the sagittal and coronal planes using the L1-pelvic angle ± 3°, L4-S1 lordosis, sagittal vertical axis, pelvic tilt, and coronal vertical axis; 2) bone quality, evaluated by the T-score from a dual-energy x-ray absorptiometry scan; and 3) soft tissue, evaluated by the paraspinal muscle-to-vertebral body ratio and fatty infiltration. The primary outcome was mechanical complications. Alongside demographic data in each model, 7 machine learning models with all combinations of domains (alignment, bone quality, and soft tissue) were trained. The positive predictive value (PPV) was calculated for each model. Of 231 patients (24% male) undergoing ASD surgery with a mean age of 64 ± 17 years, 147 (64%) developed at least one mechanical complication. The model with alignment alone performed poorly, with a PPV of 0.85. However, the model with alignment, bone quality, and soft tissue achieved a high PPV of 0.90, sensitivity of 0.67, and specificity of 0.84. Moreover, the model with alignment alone failed to predict 15 complications of 100, whereas the model with all three domains only failed to predict 10 of 100. These results support the notion that not every mechanical failure is explained by alignment alone. The authors found that a combination of alignment, bone quality, and soft tissue provided the most accurate prediction of mechanical complications after ASD surgery. While achieving optimal alignment is essential, additional data including bone and soft tissue are necessary to minimize mechanical complications.

Orbital CT deep learning models in thyroid eye disease rival medical specialists' performance in optic neuropathy prediction in a quaternary referral center and revealed impact of the bony walls.

Kheok SW, Hu G, Lee MH, Wong CP, Zheng K, Htoon HM, Lei Z, Tan ASM, Chan LL, Ooi BC, Seah LL

pubmed logopapersJul 1 2025
To develop and evaluate orbital CT deep learning (DL) models in optic neuropathy (ON) prediction in patients diagnosed with thyroid eye disease (TED), using partial versus entire 2D versus 3D images for input. Patients with TED ±ON diagnosed at a quaternary-level practice and who underwent orbital CT between 2002 and 2017 were included. DL models were developed using annotated CT data. The DL models were used to evaluate the hold-out test set. ON classification performances were compared between models and medical specialists, and saliency maps applied to randomized cases. 36/252 orbits in 126 TED patients (mean age, 51 years; 81 women) had clinically confirmed ON. With 2D image input for ON prediction, our models achieved (a) sensitivity 89%, AUC 0.86 on entire coronal orbital apex including bony walls, and (b) specificity 92%, AUC 0.79 on partial axial lateral orbital wall only annotations. ON classification performance was similar (<i>p</i> = 0.58) between DL model and medical specialists. DL models trained on 2D CT annotations rival medical specialists in ON classification, with potential to objectively enhance clinical triage for sight-saving intervention and incorporate model variants in the workflow to harness differential performance metrics.

Association between antithrombotic medications and intracranial hemorrhage among older patients with mild traumatic brain injury: a multicenter cohort study.

Benhamed A, Crombé A, Seux M, Frassin L, L'Huillier R, Mercier E, Émond M, Millon D, Desmeules F, Tazarourte K, Gorincour G

pubmed logopapersJul 1 2025
To measure the association between antithrombotic (AT) medications (anticoagulant and antiplatelet) and risk for traumatic intracranial hemorrhage (ICH) in older adults with a mild traumatic brain injury (mTBI). We conducted a retrospective multicenter study across 103 emergency departments affiliated with a teleradiology company dedicated to emergency imaging between 2020 and 2022. Older adults (≥65 years old) with mTBI, with a head computed tomography scan, were included. Natural language processing models were used to label-free texts of emergency physician forms and radiology reports; and a multivariable logistic regression model to measure the association between AT medications and occurrence of ICH. A total of 5948 patients [median age 84.6 (74.3-89.1) years, 58.1% females] were included, of whom 781 (13.1%) had an ICH. Among them, 3177 (53.4%) patients were treated with at least one AT agent. No AT medication was associated with a higher risk for ICH: antiplatelet odds ratio 0.98 95% confidence interval (0.81-1.18), direct oral anticoagulant 0.82 (0.60-1.09), and vitamin K antagonist 0.66 (0.37-1.10). Conversely, a high-level fall [1.68 (1.15-2.4)], a Glasgow coma scale of 14 [1.83 (1.22-2.68)], a cutaneous head impact [1.5 (1.17-1.92)], vomiting [1.59 (1.18-2.14)], amnesia [1.35 (1.02-1.79)], a suspected skull vault fracture [9.3 (14.2-26.5)] or of facial bones fracture [1.34 (1.02-1.75)] were associated with a higher risk for ICH. This study found no association between AT medications and an increased risk of ICH among older patients with mTBI suggesting that routine neuroimaging in this population may offer limited benefit and that additional variables should be considered in the imaging decision.

Improving Tuberculosis Detection in Chest X-Ray Images Through Transfer Learning and Deep Learning: Comparative Study of Convolutional Neural Network Architectures.

Mirugwe A, Tamale L, Nyirenda J

pubmed logopapersJul 1 2025
Tuberculosis (TB) remains a significant global health challenge, as current diagnostic methods are often resource-intensive, time-consuming, and inaccessible in many high-burden communities, necessitating more efficient and accurate diagnostic methods to improve early detection and treatment outcomes. This study aimed to evaluate the performance of 6 convolutional neural network architectures-Visual Geometry Group-16 (VGG16), VGG19, Residual Network-50 (ResNet50), ResNet101, ResNet152, and Inception-ResNet-V2-in classifying chest x-ray (CXR) images as either normal or TB-positive. The impact of data augmentation on model performance, training times, and parameter counts was also assessed. The dataset of 4200 CXR images, comprising 700 labeled as TB-positive and 3500 as normal cases, was used to train and test the models. Evaluation metrics included accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve. The computational efficiency of each model was analyzed by comparing training times and parameter counts. VGG16 outperformed the other architectures, achieving an accuracy of 99.4%, precision of 97.9%, recall of 98.6%, F1-score of 98.3%, and area under the receiver operating characteristic curve of 98.25%. This superior performance is significant because it demonstrates that a simpler model can deliver exceptional diagnostic accuracy while requiring fewer computational resources. Surprisingly, data augmentation did not improve performance, suggesting that the original dataset's diversity was sufficient. Models with large numbers of parameters, such as ResNet152 and Inception-ResNet-V2, required longer training times without yielding proportionally better performance. Simpler models like VGG16 offer a favorable balance between diagnostic accuracy and computational efficiency for TB detection in CXR images. These findings highlight the need to tailor model selection to task-specific requirements, providing valuable insights for future research and clinical implementations in medical image classification.

Spondyloarthritis Research and Treatment Network (SPARTAN) Clinical and Imaging Year in Review 2024.

Ferrandiz-Espadin R, Liew JW

pubmed logopapersJul 1 2025
Diagnostic delay remains a critical challenge in axial spondyloarthritis (axSpA). This review highlights key clinical and imaging research from 2024 that addresses this persistent issue, with a focus on the evolving roles of MRI, artificial intelligence (AI), and updated Canadian management recommendations. Multiple studies published in 2024 emphasized the continued problem of diagnostic delay in axSpA. Studies support the continued use of sacroiliac joint MRI as a central diagnostic tool for axSpA, particularly in patients with chronic back pain and associated conditions like uveitis, psoriasis (PsO), or inflammatory bowel disease. AI-based tools for interpreting sacroiliac joint MRIs demonstrated moderate agreement with expert assessments, offering a potential solution to variability and limited access to expert musculoskeletal radiology. These innovations may support earlier diagnosis and reduce misclassification. Innovative models of care, including patient-initiated telemedicine visits, reduced in-person visit frequency without compromising clinical outcomes in patients with stable axSpA. Updated Canadian treatment guidelines introduced more robust data on Janus kinase (JAK) inhibitors and offered stronger support for tapering biologics in patients with sustained low disease activity or remission, while advising against abrupt discontinuation. This clinical and imaging year in review covers challenges and innovations in axSpA, emphasizing the need for early access to care and the development of tools to support prompt diagnosis and sustained continuity of care.

Dual-threshold sample selection with latent tendency difference for label-noise-robust pneumoconiosis staging.

Zhang S, Ren X, Qiang Y, Zhao J, Qiao Y, Yue H

pubmed logopapersJul 1 2025
BackgroundThe precise pneumoconiosis staging suffers from progressive pair label noise (PPLN) in chest X-ray datasets, because adjacent stages are confused due to unidentifialble and diffuse opacities in the lung fields. As deep neural networks are employed to aid the disease staging, the performance is degraded under such label noise.ObjectiveThis study improves the effectiveness of pneumoconiosis staging by mitigating the impact of PPLN through network architecture refinement and sample selection mechanism adjustment.MethodsWe propose a novel multi-branch architecture that incorporates the dual-threshold sample selection. Several auxiliary branches are integrated in a two-phase module to learn and predict the <i>progressive feature tendency</i>. A novel difference-based metric is introduced to iteratively obtained the instance-specific thresholds as a complementary criterion of dynamic sample selection. All the samples are finally partitioned into <i>clean</i> and <i>hard</i> sets according to dual-threshold criteria and treated differently by loss functions with penalty terms.ResultsCompared with the state-of-the-art, the proposed method obtains the best metrics (accuracy: 90.92%, precision: 84.25%, sensitivity: 81.11%, F1-score: 82.06%, and AUC: 94.64%) under real-world PPLN, and is less sensitive to the rise of synthetic PPLN rate. An ablation study validates the respective contributions of critical modules and demonstrates how variations of essential hyperparameters affect model performance.ConclusionsThe proposed method achieves substantial effectiveness and robustness against PPLN in pneumoconiosis dataset, and can further assist physicians in diagnosing the disease with a higher accuracy and confidence.

Computed Tomography Advancements in Plaque Analysis: From Histology to Comprehensive Plaque Burden Assessment.

Catapano F, Lisi C, Figliozzi S, Scialò V, Politi LS, Francone M

pubmed logopapersJul 1 2025
Advancements in coronary computed tomography angiography (CCTA) facilitated the transition from traditional histological approaches to comprehensive plaque burden assessment. Recent updates in the European Society of Cardiology (ESC) guidelines emphasize CCTA's role in managing chronic coronary syndrome by enabling detailed monitoring of atherosclerotic plaque progression. Limitations of conventional CCTA, such as spatial resolution challenges in accurately characterizing plaque components like thin-cap fibroatheromas and necrotic lipid-rich cores, are addressed with photon-counting detector CT (PCD-CT) technology. PCD-CT offers enhanced spatial resolution and spectral imaging, improving the detection and characterization of high-risk plaque features while reducing artifacts. The integration of artificial intelligence (AI) in plaque analysis enhances diagnostic accuracy through automated plaque characterization and radiomics. These technological advancements support a comprehensive approach to plaque assessment, incorporating hemodynamic evaluations, morphological metrics, and AI-driven analysis, thereby enabling personalized patient care and improved prediction of acute clinical events.

ARTIFICIAL INTELLIGENCE ENHANCES DIAGNOSTIC ACCURACY OF CONTRAST ENEMAS IN HIRSCHSPRUNG DISEASE COMPARED TO CLINICAL EXPERTS.

Vargova P, Varga M, Izquierdo Hernandez B, Gutierrez Alonso C, Gonzalez Esgueda A, Cobos Hernandez MV, Fernandez R, González-Ruiz Y, Bragagnini Rodriguez P, Del Peral Samaniego M, Corona Bellostas C

pubmed logopapersJul 1 2025
Introduction Contrast enema (CE) is widely used in the evaluation of suspected Hirschsprung disease (HD). Deep learning is a promising tool to standardize image assessment and support clinical decision-making. This study assesses the diagnostic performance of a deep neural network (DNN), with and without clinical data, and compares its interpretation with that of pediatric surgeons and radiologists. Materials and Methods In this retrospective study, 1471 contrast enema images from patients <15 years were analysed, with 218 images used for testing. A deep neural network, pediatric radiologists, and surgeons independently reviewed the testing set, with and without clinical data. Diagnostic performance was assessed using ROC and PR curves, and interobserver agreement was evaluated using Fleiss' kappa. Results The deep neural network achieved high diagnostic accuracy (AUC-ROC = 0.87) in contrast enema interpretation, with improved performance when combining anteroposterior and lateral images (AUC-ROC = 0.92). Clinical data integration further enhanced model sensitivity and negative predictive value. The super-surgeon (majority voting of colorectal surgeons) outperformed most individual clinicians (sensitivity 81.8%, specificity 79.1%), while the super-radiologist (majority voting of radiologist) showed moderate accuracy. Interobserver analysis revealed strong agreement between the model and surgeons (Cohen's kappa = 0.73), and overall consistency among experts and the model (Fleiss' kappa = 0.62). Conclusions AI-assisted CE interpretation achieved higher specificity and comparable sensitivity to those of the clinicians. Its consistent performance and substantial agreement with experts support its potential role in improving CE assessment in HD.

Perilesional dominance: radiomics of multiparametric MRI enhances differentiation of IgG4-Related ophthalmic disease and orbital MALT lymphoma.

Li J, Zhou C, Qu X, Du L, Yuan Q, Han Q, Xian J

pubmed logopapersJul 1 2025
To develop and validate a diagnostic framework integrating intralesional (ILN) and perilesional (PLN) radiomics derived from multiparametric MRI (mpMRI) for distinguishing IgG4-related ophthalmic disease (IgG4-ROD) from orbital mucosa-associated lymphoid tissue (MALT) lymphoma. This multicenter retrospective study analyzed 214 histopathologically confirmed cases (68 IgG4-ROD, 146 MALT lymphoma) from two institutions (2019-2024). A LASSO-SVM classifier was optimized through comparative evaluation of seven machine learning models, incorporating fused radiomic features (1,197 features) from ILN/PLN regions. Diagnostic performance was benchmarked against two subspecialty radiologists (10-20 years' experience) using receiver operating characteristics - area under the curve (AUC), precision-recall AUC (PR-AUC), and decision curve analysis (DCA), adhering to CLEAR/METRICS guidelines. The fusion model (FR_RAD) achieved state-of-the-art performance, with an AUC of 0.927 (95% CI 0.902-0.958) and a PR-AUC of 0.901 (95% CI 0.862-0.940) in the training set, and an AUC of 0.907 (95% CI 0.857-0.965) and a PR-AUC of 0.872 (95% CI 0.820-0.924) on external testing. In contrast, subspecialty radiologists achieved lower AUCs of 0.671-0.740 (95% CI 0.630-0.780) and PR-AUCs of 0.553-0.632 (95% CI 0.521-0.664) (all p < 0.001). FR_RAD also outperformed radiologists in accuracy (88.6% vs. 66.2% and 71.3%; p < 0.01). DCA demonstrated a net benefit of 0.18 at a high-risk threshold of 30%, equivalent to avoiding 18 unnecessary biopsies per 100 cases. The fusion model integrating multi-regional radiomics from mpMRI achieves precise differentiation between IgG4-ROD and orbital MALT lymphoma, outperforming subspecialty radiologists. This approach highlights the transformative potential of spatial radiomics analysis in resolving diagnostic uncertainties and reducing reliance on invasive procedures for orbital lesion characterization.
Page 140 of 2432424 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.