Perilesional dominance: radiomics of multiparametric MRI enhances differentiation of IgG4-Related ophthalmic disease and orbital MALT lymphoma.

Authors

Li J,Zhou C,Qu X,Du L,Yuan Q,Han Q,Xian J

Affiliations (5)

  • Department of Radiology, The Second Hospital of Jilin University, Changchun, Jilin Province, 130041, China.
  • Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
  • Department of Radiology, The Second Hospital of Jilin University, Changchun, Jilin Province, 130041, China. [email protected].
  • Department of Radiology, The Second Hospital of Jilin University, Changchun, Jilin Province, 130041, China. [email protected].
  • Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China. [email protected].

Abstract

To develop and validate a diagnostic framework integrating intralesional (ILN) and perilesional (PLN) radiomics derived from multiparametric MRI (mpMRI) for distinguishing IgG4-related ophthalmic disease (IgG4-ROD) from orbital mucosa-associated lymphoid tissue (MALT) lymphoma. This multicenter retrospective study analyzed 214 histopathologically confirmed cases (68 IgG4-ROD, 146 MALT lymphoma) from two institutions (2019-2024). A LASSO-SVM classifier was optimized through comparative evaluation of seven machine learning models, incorporating fused radiomic features (1,197 features) from ILN/PLN regions. Diagnostic performance was benchmarked against two subspecialty radiologists (10-20 years' experience) using receiver operating characteristics - area under the curve (AUC), precision-recall AUC (PR-AUC), and decision curve analysis (DCA), adhering to CLEAR/METRICS guidelines. The fusion model (FR_RAD) achieved state-of-the-art performance, with an AUC of 0.927 (95% CI 0.902-0.958) and a PR-AUC of 0.901 (95% CI 0.862-0.940) in the training set, and an AUC of 0.907 (95% CI 0.857-0.965) and a PR-AUC of 0.872 (95% CI 0.820-0.924) on external testing. In contrast, subspecialty radiologists achieved lower AUCs of 0.671-0.740 (95% CI 0.630-0.780) and PR-AUCs of 0.553-0.632 (95% CI 0.521-0.664) (all p < 0.001). FR_RAD also outperformed radiologists in accuracy (88.6% vs. 66.2% and 71.3%; p < 0.01). DCA demonstrated a net benefit of 0.18 at a high-risk threshold of 30%, equivalent to avoiding 18 unnecessary biopsies per 100 cases. The fusion model integrating multi-regional radiomics from mpMRI achieves precise differentiation between IgG4-ROD and orbital MALT lymphoma, outperforming subspecialty radiologists. This approach highlights the transformative potential of spatial radiomics analysis in resolving diagnostic uncertainties and reducing reliance on invasive procedures for orbital lesion characterization.

Topics

Lymphoma, B-Cell, Marginal ZoneOrbital NeoplasmsMultiparametric Magnetic Resonance ImagingImmunoglobulin G4-Related DiseaseEye DiseasesJournal ArticleMulticenter Study

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.