Sort by:
Page 140 of 1411403 results

A Vision-Language Model for Focal Liver Lesion Classification

Song Jian, Hu Yuchang, Wang Hui, Chen Yen-Wei

arxiv logopreprintMay 6 2025
Accurate classification of focal liver lesions is crucial for diagnosis and treatment in hepatology. However, traditional supervised deep learning models depend on large-scale annotated datasets, which are often limited in medical imaging. Recently, Vision-Language models (VLMs) such as Contrastive Language-Image Pre-training model (CLIP) has been applied to image classifications. Compared to the conventional convolutional neural network (CNN), which classifiers image based on visual information only, VLM leverages multimodal learning with text and images, allowing it to learn effectively even with a limited amount of labeled data. Inspired by CLIP, we pro-pose a Liver-VLM, a model specifically designed for focal liver lesions (FLLs) classification. First, Liver-VLM incorporates class information into the text encoder without introducing additional inference overhead. Second, by calculating the pairwise cosine similarities between image and text embeddings and optimizing the model with a cross-entropy loss, Liver-VLM ef-fectively aligns image features with class-level text features. Experimental results on MPCT-FLLs dataset demonstrate that the Liver-VLM model out-performs both the standard CLIP and MedCLIP models in terms of accuracy and Area Under the Curve (AUC). Further analysis shows that using a lightweight ResNet18 backbone enhances classification performance, particularly under data-constrained conditions.

Nonperiodic dynamic CT reconstruction using backward-warping INR with regularization of diffeomorphism (BIRD)

Muge Du, Zhuozhao Zheng, Wenying Wang, Guotao Quan, Wuliang Shi, Le Shen, Li Zhang, Liang Li, Yinong Liu, Yuxiang Xing

arxiv logopreprintMay 6 2025
Dynamic computed tomography (CT) reconstruction faces significant challenges in addressing motion artifacts, particularly for nonperiodic rapid movements such as cardiac imaging with fast heart rates. Traditional methods struggle with the extreme limited-angle problems inherent in nonperiodic cases. Deep learning methods have improved performance but face generalization challenges. Recent implicit neural representation (INR) techniques show promise through self-supervised deep learning, but have critical limitations: computational inefficiency due to forward-warping modeling, difficulty balancing DVF complexity with anatomical plausibility, and challenges in preserving fine details without additional patient-specific pre-scans. This paper presents a novel INR-based framework, BIRD, for nonperiodic dynamic CT reconstruction. It addresses these challenges through four key contributions: (1) backward-warping deformation that enables direct computation of each dynamic voxel with significantly reduced computational cost, (2) diffeomorphism-based DVF regularization that ensures anatomically plausible deformations while maintaining representational capacity, (3) motion-compensated analytical reconstruction that enhances fine details without requiring additional pre-scans, and (4) dimensional-reduction design for efficient 4D coordinate encoding. Through various simulations and practical studies, including digital and physical phantoms and retrospective patient data, we demonstrate the effectiveness of our approach for nonperiodic dynamic CT reconstruction with enhanced details and reduced motion artifacts. The proposed framework enables more accurate dynamic CT reconstruction with potential clinical applications, such as one-beat cardiac reconstruction, cinematic image sequences for functional imaging, and motion artifact reduction in conventional CT scans.

Stacking classifiers based on integrated machine learning model: fusion of CT radiomics and clinical biomarkers to predict lymph node metastasis in locally advanced gastric cancer patients after neoadjuvant chemotherapy.

Ling T, Zuo Z, Huang M, Ma J, Wu L

pubmed logopapersMay 6 2025
The early prediction of lymph node positivity (LN+) after neoadjuvant chemotherapy (NAC) is crucial for optimizing individualized treatment strategies. This study aimed to integrate radiomic features and clinical biomarkers through machine learning (ML) approaches to enhance prediction accuracy by focusing on patients with locally advanced gastric cancer (LAGC). We retrospectively enrolled 277 patients with LAGC and randomly divided them into training (n = 193) and validation (n = 84) sets at a 7:3 ratio. In total, 1,130 radiomics features were extracted from pre-treatment portal venous phase computed tomography scans. These features were linearly combined to develop a radiomics score (rad score) through feature engineering. Then, using the rad score and clinical biomarkers as input features, we applied simple statistical strategies (relying on a single ML model) and integrated statistical strategies (including classification model integration techniques, such as hard voting, soft voting, and stacking) to predict LN+ post-NAC. The diagnostic performance of the model was assessed using receiver operating characteristic curves with corresponding areas under the curve (AUC). Of all ML models, the stacking classifier, an integrated statistical strategy, exhibited the best performance, achieving an AUC of 0.859 for predicting LN+ in patients with LAGC. This predictive model was transformed into a publicly available online risk calculator. We developed a stacking classifier that integrates radiomics and clinical biomarkers to predict LN+ in patients with LAGC undergoing surgical resection, providing personalized treatment insights.

Upper-lobe CT imaging features improve prediction of lung function decline in COPD.

Makimoto K, Virdee S, Koo M, Hogg JC, Bourbeau J, Tan WC, Kirby M

pubmed logopapersMay 1 2025
It is unknown whether prediction models for lung function decline using computed tomography (CT) imaging-derived features from the upper lobes improve performance compared with globally derived features in individuals at risk of and with COPD. Individuals at risk (current or former smokers) and those with COPD from the Canadian Cohort Obstructive Lung Disease (CanCOLD) retrospective study, were investigated. A total of 103 CT features were extracted globally and regionally, and were used with 12 clinical features (demographics, questionnaires and spirometry) to predict rapid lung function decline for individuals at risk and those with COPD. Machine-learning models were evaluated in a hold-out test set using the area under the receiver operating characteristic curve (AUC) with DeLong's test for comparison. A total of 780 participants were included (n=276 at risk; n=298 Global Initiative for Chronic Obstructive Lung Disease (GOLD) 1 COPD; n=206 GOLD 2+ COPD). For predicting rapid lung function decline in those at risk, the upper-lobe CT model obtained a significantly higher AUC (AUC=0.80) than the lower-lobe CT model (AUC=0.63) and global model (AUC=0.66; p<0.05). For predicting rapid lung function decline in COPD, there was no significant differences between the upper-lobe (AUC=0.63), lower-lobe (AUC=0.59) or global CT features model (AUC=059; p>0.05). CT features extracted from the upper lobes obtained significantly improved prediction performance compared with globally extracted features for rapid lung function decline in early/mild COPD.

Deep learning-based fine-grained assessment of aneurysm wall characteristics using 4D-CT angiography.

Kumrai T, Maekawa T, Chen Y, Sugiyama Y, Takagaki M, Yamashiro S, Takizawa K, Ichinose T, Ishida F, Kishima H

pubmed logopapersJan 1 2025
This study proposes a novel deep learning-based approach for aneurysm wall characteristics, including thin-walled (TW) and hyperplastic-remodeling (HR) regions. We analyzed fifty-two unruptured cerebral aneurysms employing 4D-computed tomography angiography (4D-CTA) and intraoperative recordings. The TW and HR regions were identified in intraoperative images. The 3D trajectories of observation points on aneurysm walls were processed to compute a time series of 3D speed, acceleration, and smoothness of motion, aiming to evaluate the aneurysm wall characteristics. To facilitate point-level risk evaluation using the time-series data, we developed a convolutional neural network (CNN)-long- short-term memory (LSTM)-based regression model enriched with attention layers. In order to accommodate patient heterogeneity, a patient-independent feature extraction mechanism was introduced. Furthermore, unlabeled data were incorporated to enhance the data-intensive deep model. The proposed method achieved an average diagnostic accuracy of 92%, significantly outperforming a simpler model lacking attention. These results underscore the significance of patient-independent feature extraction and the use of unlabeled data. This study demonstrates the efficacy of a fine-grained deep learning approach in predicting aneurysm wall characteristics using 4D-CTA. Notably, incorporating an attention-based network structure proved to be particularly effective, contributing to enhanced performance.

Improving lung cancer diagnosis and survival prediction with deep learning and CT imaging.

Wang X, Sharpnack J, Lee TCM

pubmed logopapersJan 1 2025
Lung cancer is a major cause of cancer-related deaths, and early diagnosis and treatment are crucial for improving patients' survival outcomes. In this paper, we propose to employ convolutional neural networks to model the non-linear relationship between the risk of lung cancer and the lungs' morphology revealed in the CT images. We apply a mini-batched loss that extends the Cox proportional hazards model to handle the non-convexity induced by neural networks, which also enables the training of large data sets. Additionally, we propose to combine mini-batched loss and binary cross-entropy to predict both lung cancer occurrence and the risk of mortality. Simulation results demonstrate the effectiveness of both the mini-batched loss with and without the censoring mechanism, as well as its combination with binary cross-entropy. We evaluate our approach on the National Lung Screening Trial data set with several 3D convolutional neural network architectures, achieving high AUC and C-index scores for lung cancer classification and survival prediction. These results, obtained from simulations and real data experiments, highlight the potential of our approach to improving the diagnosis and treatment of lung cancer.

Refining CT image analysis: Exploring adaptive fusion in U-nets for enhanced brain tissue segmentation.

Chen BC, Shen CY, Chai JW, Hwang RH, Chiang WC, Chou CH, Liu WM

pubmed logopapersJan 1 2025
Non-contrast Computed Tomography (NCCT) quickly diagnoses acute cerebral hemorrhage or infarction. However, Deep-Learning (DL) algorithms often generate false alarms (FA) beyond the cerebral region. We introduce an enhanced brain tissue segmentation method for infarction lesion segmentation (ILS). This method integrates an adaptive result fusion strategy to confine the search operation within cerebral tissue, effectively reducing FAs. By leveraging fused brain masks, DL-based ILS algorithms focus on pertinent radiomic correlations. Various U-Net models underwent rigorous training, with exploration of diverse fusion strategies. Further refinement entailed applying a 9x9 Gaussian filter with unit standard deviation followed by binarization to mitigate false positives. Performance evaluation utilized Intersection over Union (IoU) and Hausdorff Distance (HD) metrics, complemented by external validation on a subset of the COCO dataset. Our study comprised 20 ischemic stroke patients (14 males, 4 females) with an average age of 68.9 ± 11.7 years. Fusion with UNet2+ and UNet3 + yielded an IoU of 0.955 and an HD of 1.33, while fusion with U-net, UNet2 + , and UNet3 + resulted in an IoU of 0.952 and an HD of 1.61. Evaluation on the COCO dataset demonstrated an IoU of 0.463 and an HD of 584.1 for fusion with UNet2+ and UNet3 + , and an IoU of 0.453 and an HD of 728.0 for fusion with U-net, UNet2 + , and UNet3 + . Our adaptive fusion strategy significantly diminishes FAs and enhances the training efficacy of DL-based ILS algorithms, surpassing individual U-Net models. This methodology holds promise as a versatile, data-independent approach for cerebral lesion segmentation.

AI-Assisted 3D Planning of CT Parameters for Personalized Femoral Prosthesis Selection in Total Hip Arthroplasty.

Yang TJ, Qian W

pubmed logopapersJan 1 2025
To investigate the efficacy of CT measurement parameters combined with AI-assisted 3D planning for personalized femoral prosthesis selection in total hip arthroplasty (THA). A retrospective analysis was conducted on clinical data from 247 patients with unilateral hip or knee joint disorders treated at Renmin Hospital of Hubei University of Medicine between April 2021 and February 2024. All patients underwent preoperative full-pelvis and bilateral full-length femoral CT scans. The raw CT data were imported into Mimics 19.0 software to reconstruct a three-dimensional (3D) model of the healthy femur. Using 3-matic Research 11.0 software, the femoral head rotation center was located, and parameters including femoral head diameter (FHD), femoral neck length (FNL), femoral neck-shaft angle (FNSA), femoral offset (FO), femoral neck anteversion angle (FNAA), tip-apex distance (TAD), and tip-apex angle (TAA) were measured. AI-assisted THA 3D planning system AIJOINT V1.0.0.0 software was used for preoperative planning and design, enabling personalized selection of femoral prostheses with varying neck-shaft angles and surgical simulation. Groups were compared by gender, age, and parameters. ROC curves evaluated prediction efficacy. Females exhibited smaller FHD, FNL, FO, TAD, TAA but larger FNSA/FNAA vs males (P<0.05). Patients >65 years had higher FO, TAD, TAA (P<0.05). TAD-TAA correlation was strong (r=0.954), while FNSA negatively correlated with TAD/TAA (r=-0.773/-0.701). ROC analysis demonstrated high predictive accuracy: TAD (AUC=0.891, sensitivity=91.7%, specificity=87.6%) and TAA (AUC=0.882, sensitivity=100%, specificity=88.8%). CT parameters (TAA, TAD, FNSA, FO) are interrelated and effective predictors for femoral prosthesis selection. Integration with AI-assisted planning optimizes personalized THA, reducing biomechanical mismatch risks.

Metal artifact reduction combined with deep learning image reconstruction algorithm for CT image quality optimization: a phantom study.

Zou H, Wang Z, Guo M, Peng K, Zhou J, Zhou L, Fan B

pubmed logopapersJan 1 2025
Aiming to evaluate the effects of the smart metal artifact reduction (MAR) algorithm and combinations of various scanning parameters, including radiation dose levels, tube voltage, and reconstruction algorithms, on metal artifact reduction and overall image quality, to identify the optimal protocol for clinical application. A phantom with a pacemaker was examined using standard dose (effective dose (ED): 3 mSv) and low dose (ED: 0.5 mSv), with three scan voltages (70, 100, and 120 kVp) selected for each dose. Raw data were reconstructed using 50% adaptive statistical iterative reconstruction-V (ASIR-V), ASIR-V with MAR, high-strength deep learning image reconstruction (DLIR-H), and DLIR-H with MAR. Quantitative analyses (artifact index (AI), noise, signal-to-noise ratio (SNR) of artifact-impaired pulmonary nodules (PNs), and noise power spectrum (NPS) of artifact-free regions) and qualitative evaluation were performed. Quantitatively, the deep learning image recognition (DLIR) algorithm or high tube voltages exhibited lower noise compared to the ASIR-V or low tube voltages (<i>p</i> < 0.001). AI of images with MAR or high tube voltages was significantly lower than that of images without MAR or low tube voltages (<i>p</i> < 0.001). No significant difference was observed in AI between low-dose images with 120 kVp DLIR-H MAR and standard-dose images with 70 kVp ASIR-V MAR (<i>p</i> = 0.143). Only the 70 kVp 3 mSv protocol demonstrated statistically significant differences in SNR for artifact-impaired PNs (<i>p</i> = 0.041). The f<sub>peak</sub> and f<sub>avg</sub> values were similar across various scenarios, indicating that the MAR algorithm did not alter the image texture in artifact-free regions. The qualitative results of the extent of metal artifacts, the confidence in diagnosing artifact-impaired PNs, and the overall image quality were generally consistent with the quantitative results. The MAR algorithm combined with DLIR-H can reduce metal artifacts and enhance the overall image quality, particularly at high kVp tube voltages.

Clinical-radiomics models with machine-learning algorithms to distinguish uncomplicated from complicated acute appendicitis in adults: a multiphase multicenter cohort study.

Li L, Sun Y, Sun Y, Gao Y, Zhang B, Qi R, Sheng F, Yang X, Liu X, Liu L, Lu C, Chen L, Zhang K

pubmed logopapersJan 1 2025
Increasing evidence suggests that non-operative management (NOM) with antibiotics could serve as a safe alternative to surgery for the treatment of uncomplicated acute appendicitis (AA). However, accurately differentiating between uncomplicated and complicated AA remains challenging. Our aim was to develop and validate machine-learning-based diagnostic models to differentiate uncomplicated from complicated AA. This was a multicenter cohort trial conducted from January 2021 and December 2022 across five tertiary hospitals. Three distinct diagnostic models were created, namely, the clinical-parameter-based model, the CT-radiomics-based model, and the clinical-radiomics-fused model. These models were developed using a comprehensive set of eight machine-learning algorithms, which included logistic regression (LR), support vector machine (SVM), random forest (RF), decision tree (DT), gradient boosting (GB), K-nearest neighbors (KNN), Gaussian Naïve Bayes (GNB), and multi-layer perceptron (MLP). The performance and accuracy of these diverse models were compared. All models exhibited excellent diagnostic performance in the training cohort, achieving a maximal AUC of 1.00. For the clinical-parameter model, the GB classifier yielded the optimal AUC of 0.77 (95% confidence interval [CI]: 0.64-0.90) in the testing cohort, while the LR classifier yielded the optimal AUC of 0.76 (95% CI: 0.66-0.86) in the validation cohort. For the CT-radiomics-based model, GB classifier achieved the best AUC of 0.74 (95% CI: 0.60-0.88) in the testing cohort, and SVM yielded an optimal AUC of 0.63 (95% CI: 0.51-0.75) in the validation cohort. For the clinical-radiomics-fused model, RF classifier yielded an optimal AUC of 0.84 (95% CI: 0.74-0.95) in the testing cohort and 0.76 (95% CI: 0.67-0.86) in the validation cohort. An open-access, user-friendly online tool was developed for clinical application. This multicenter study suggests that the clinical-radiomics-fused model, constructed using RF algorithm, effectively differentiated between complicated and uncomplicated AA.
Page 140 of 1411403 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.