Sort by:
Page 139 of 2432422 results

A multimodal deep-learning model based on multichannel CT radiomics for predicting pathological grade of bladder cancer.

Zhao T, He J, Zhang L, Li H, Duan Q

pubmed logopapersJul 1 2025
To construct a predictive model using deep-learning radiomics and clinical risk factors for assessing the preoperative histopathological grade of bladder cancer according to computed tomography (CT) images. A retrospective analysis was conducted involving 201 bladder cancer patients with definite pathological grading results after surgical excision at the organization between January 2019 and June 2023. The cohort was classified into a test set of 81 cases and a training set of 120 cases. Hand-crafted radiomics (HCR) and features derived from deep-learning (DL) were obtained from computed tomography (CT) images. The research builds a prediction model using 12 machine-learning classifiers, which integrate HCR, DL features, and clinical data. Model performance was estimated utilizing decision-curve analysis (DCA), the area under the curve (AUC), and calibration curves. Among the classifiers tested, the logistic regression model that combined DL and HCR characteristics demonstrated the finest performance. The AUC values were 0.912 (training set) and 0.777 (test set). The AUC values of clinical model achieved 0.850 (training set) and 0.804 (test set). The AUC values of the combined model were 0.933 (training set) and 0.824 (test set), outperforming both the clinical and HCR-only models. The CT-based combined model demonstrated considerable diagnostic capability in differentiating high-grade from low-grade bladder cancer, serving as a valuable noninvasive instrument for preoperative pathological evaluation.

Response prediction for neoadjuvant treatment in locally advanced rectal cancer patients-improvement in decision-making: A systematic review.

Boldrini L, Charles-Davies D, Romano A, Mancino M, Nacci I, Tran HE, Bono F, Boccia E, Gambacorta MA, Chiloiro G

pubmed logopapersJul 1 2025
Predicting pathological complete response (pCR) from pre or post-treatment features could be significant in improving the process of making clinical decisions and providing a more personalized treatment approach for better treatment outcomes. However, the lack of external validation of predictive models, missing in several published articles, is a major issue that can potentially limit the reliability and applicability of predictive models in clinical settings. Therefore, this systematic review described different externally validated methods of predicting response to neoadjuvant chemoradiotherapy (nCRT) in locally advanced rectal cancer (LARC) patients and how they could improve clinical decision-making. An extensive search for eligible articles was performed on PubMed, Cochrane, and Scopus between 2018 and 2023, using the keywords: (Response OR outcome) prediction AND (neoadjuvant OR chemoradiotherapy) treatment in 'locally advanced Rectal Cancer'. (i) Studies including patients diagnosed with LARC (T3/4 and N- or any T and N+) by pre-medical imaging and pathological examination or as stated by the author (ii) Standardized nCRT completed. (iii) Treatment with long or short course radiotherapy. (iv) Studies reporting on the prediction of response to nCRT with pathological complete response (pCR) as the primary outcome. (v) Studies reporting external validation results for response prediction. (vi) Regarding language restrictions, only articles in English were accepted. (i) We excluded case report studies, conference abstracts, reviews, studies reporting patients with distant metastases at diagnosis. (ii) Studies reporting response prediction with only internally validated approaches. Three researchers (DC-D, FB, HT) independently reviewed and screened titles and abstracts of all articles retrieved after de-duplication. Possible disagreements were resolved through discussion among the three researchers. If necessary, three other researchers (LB, GC, MG) were consulted to make the final decision. The extraction of data was performed using the CHecklist for critical Appraisal and data extraction for systematic Reviews of prediction Modelling Studies (CHARMS) template and quality assessment was done using the Prediction model Risk Of Bias Assessment Tool (PROBAST). A total of 4547 records were identified from the three databases. After excluding 392 duplicate results, 4155 records underwent title and abstract screening. Three thousand and eight hundred articles were excluded after title and abstract screening and 355 articles were retrieved. Out of the 355 retrieved articles, 51 studies were assessed for eligibility. Nineteen reports were then excluded due to lack of reports on external validation, while 4 were excluded due to lack of evaluation of pCR as the primary outcome. Only Twenty-eight articles were eligible and included in this systematic review. In terms of quality assessment, 89 % of the models had low concerns in the participants domain, while 11 % had an unclear rating. 96 % of the models were of low concern in both the predictors and outcome domains. The overall rating showed high applicability potential of the models with 82 % showing low concern, while 18 % were deemed unclear. Most of the external validated techniques showed promising performances and the potential to be applied in clinical settings, which is a crucial step towards evidence-based medicine. However, more studies focused on the external validations of these models in larger cohorts is necessary to ensure that they can reliably predict outcomes in diverse populations.

A Longitudinal Analysis of Pre- and Post-Operative Dysmorphology in Metopic Craniosynostosis.

Beiriger JW, Tao W, Irgebay Z, Smetona J, Dvoracek L, Kass NM, Dixon A, Zhang C, Mehta M, Whitaker R, Goldstein JA

pubmed logopapersJul 1 2025
The purpose of this study is to objectively quantify the degree of overcorrection in our current practice and to evaluate longitudinal morphological changes using CranioRate<sup>TM</sup>, a novel machine learning skull morphology assessment tool.  Design:Retrospective cohort study across multiple time points. Tertiary care children's hospital. Patients with preoperative and postoperative CT scans who underwent fronto-orbital advancement (FOA) for metopic craniosynostosis. We evaluated preoperative, postoperative, and two-year follow-up skull morphology using CranioRate<sup>TM</sup> to generate a Metopic Severity Score (MSS), a measure of degree of metopic dysmorphology, and Cranial Morphology Deviation (CMD) score, a measure of deviation from normal skull morphology. Fifty-five patients were included, average age at surgery was 1.3 years. Sixteen patients underwent follow-up CT imaging at an average of 3.1 years. Preoperative MSS was 6.3 ± 2.5 (CMD 199.0 ± 39.1), immediate postoperative MSS was -2.0 ± 1.9 (CMD 208.0 ± 27.1), and longitudinal MSS was 1.3 ± 1.1 (CMD 179.8 ± 28.1). MSS approached normal at two-year follow-up (defined as MSS = 0). There was a significant relationship between preoperative MSS and follow-up MSS (R<sup>2 </sup>= 0.70). MSS quantifies overcorrection and normalization of head shape, as patients with negative values were less "metopic" than normal postoperatively and approached 0 at 2-year follow-up. CMD worsened postoperatively due to postoperative bony changes associated with surgical displacements following FOA. All patients had similar postoperative metopic dysmorphology, with no significant association with preoperative severity. More severe patients had worse longitudinal dysmorphology, reinforcing that regression to the metopic shape is a postoperative risk which increases with preoperative severity.

An adaptive deep learning approach based on InBNFus and CNNDen-GRU networks for breast cancer and maternal fetal classification using ultrasound images.

Fatima M, Khan MA, Mirza AM, Shin J, Alasiry A, Marzougui M, Cha J, Chang B

pubmed logopapersJul 1 2025
Convolutional Neural Networks (CNNs), a sophisticated deep learning technique, have proven highly effective in identifying and classifying abnormalities related to various diseases. The manual classification of these is a hectic and time-consuming process; therefore, it is essential to develop a computerized technique. Most existing methods are designed to address a single specific problem, limiting their adaptability. In this work, we proposed a novel adaptive deep-learning framework for simultaneously classifying breast cancer and maternal-fetal ultrasound datasets. Data augmentation was applied in the preprocessing phase to address the data imbalance problem. After, two novel architectures are proposed: InBnFUS and CNNDen-GRU. The InBnFUS network combines 5-Blocks inception-based architecture (Model 1) and 5-Blocks inverted bottleneck-based architecture (Model 2) through a depth-wise concatenation layer, while CNNDen-GRU incorporates 5-Blocks dense architecture with an integrated GRU layer. Post-training features were extracted from the global average pooling and GRU layer and classified using neural network classifiers. The experimental evaluation achieved enhanced accuracy rates of 99.0% for breast cancer, 96.6% for maternal-fetal (common planes), and 94.6% for maternal-fetal (brain) datasets. Additionally, the models consistently achieve high precision, recall, and F1 scores across both datasets. A comprehensive ablation study has been performed, and the results show the superior performance of the proposed models.

Enhanced diagnostic and prognostic assessment of cardiac amyloidosis using combined <sup>11</sup>C-PiB PET/CT and <sup>99m</sup>Tc-DPD scintigraphy.

Hong Z, Spielvogel CP, Xue S, Calabretta R, Jiang Z, Yu J, Kluge K, Haberl D, Nitsche C, Grünert S, Hacker M, Li X

pubmed logopapersJul 1 2025
Cardiac amyloidosis (CA) is a severe condition characterized by amyloid fibril deposition in the myocardium, leading to restrictive cardiomyopathy and heart failure. Differentiating between amyloidosis subtypes is crucial due to distinct treatment strategies. The individual conventional diagnostic methods lack the accuracy needed for effective subtype identification. This study aimed to evaluate the efficacy of combining <sup>11</sup>C-PiB PET/CT and <sup>99m</sup>Tc-DPD scintigraphy in detecting CA and distinguishing between its main subtypes, light chain (AL) and transthyretin (ATTR) amyloidosis while assessing the association of imaging findings with patient prognosis. We retrospectively evaluated the diagnostic efficacy of combining <sup>11</sup>C-PiB PET/CT and <sup>99m</sup>Tc-DPD scintigraphy in a cohort of 50 patients with clinical suspicion of CA. Semi-quantitative imaging markers were extracted from the images. Diagnostic performance was calculated against biopsy results or genetic testing. Both machine learning models and a rationale-based model were developed to detect CA and classify subtypes. Survival prediction over five years was assessed using a random survival forest model. Prognostic value was assessed using Kaplan-Meier estimators and Cox proportional hazards models. The combined imaging approach significantly improved diagnostic accuracy, with <sup>11</sup>C-PiB PET and <sup>99m</sup>Tc-DPD scintigraphy showing complementary strengths in detecting AL and ATTR, respectively. The machine learning model achieved an AUC of 0.94 (95% CI 0.93-0.95) for CA subtype differentiation, while the rationale-based model demonstrated strong diagnostic ability with AUCs of 0.95 (95% CI 0.88-1.00) for ATTR and 0.88 (95% CI 0.770-0.961) for AL. Survival prediction models identified key prognostic markers, with significant stratification of overall mortality based on predicted survival (p value = 0.006; adj HR 2.43 [95% CI 1.03-5.71]). The integration of <sup>11</sup>C-PiB PET/CT and <sup>99m</sup>Tc-DPD scintigraphy, supported by both machine learning and rationale-based models, enhances the diagnostic accuracy and prognostic assessment of cardiac amyloidosis, with significant implications for clinical practice.

Machine learning-based model to predict long-term tumor control and additional interventions following pituitary surgery for Cushing's disease.

Shinya Y, Ghaith AK, Hong S, Erickson D, Bancos I, Herndon JS, Davidge-Pitts CJ, Nguyen RT, Bon Nieves A, Sáez Alegre M, Morshed RA, Pinheiro Neto CD, Peris Celda M, Pollock BE, Meyer FB, Atkinson JLD, Van Gompel JJ

pubmed logopapersJul 1 2025
In this study, the authors aimed to establish a supervised machine learning (ML) model based on multiple tree-based algorithms to predict long-term biochemical outcomes and intervention-free survival (IFS) after endonasal transsphenoidal surgery (ETS) in patients with Cushing's disease (CD). The medical records of patients who underwent ETS for CD between 2013 and 2023 were reviewed. Data were collected on the patient's baseline characteristics, intervention details, histopathology, surgical outcomes, and postoperative endocrine functions. The study's primary outcome was IFS, and the therapeutic outcomes were labeled as "under control" or "treatment failure," depending on whether additional therapeutic interventions after primary ETS were required. The decision tree and random forest classifiers were trained and tested to predict long-term IFS based on unseen data, using an 80/20 cohort split. Data from 150 patients, with a median follow-up period of 56 months, were extracted. In the cohort, 42 (28%) patients required additional intervention for persistent or recurrent CD. Consequently, the IFS rates following ETS alone were 83% at 3 years and 78% at 5 years. Multivariable Cox proportional hazards analysis demonstrated that a smaller tumor diameter that could be detected by MRI (hazard ratio 0.95, 95% CI 0.90-0.99; p = 0.047) was significantly associated with greater IFS. However, the lack of tumor detection on MRI was a poor predictor. The ML-based model using a decision tree model displayed 91% accuracy (95% CI 0.70-0.94, sensitivity 87.0%, specificity 89.0%) in predicting IFS in the unseen test dataset. Random forest analysis revealed that tumor size (mean minimal depth 1.67), Knosp grade (1.75), patient age (1.80), and BMI (1.99) were the four most significant predictors of long-term IFS. The ML algorithm could predict long-term postoperative endocrinological remission in CD with high accuracy, indicating that prognosis may vary not only with previously reported factors such as tumor size, Knosp grade, gross-total resection, and patient age but also with BMI. The decision tree flowchart could potentially stratify patients with CD before ETS, allowing for the selection of personalized treatment options and thereby assisting in determining treatment plans for these patients. This ML model may lead to a deeper understanding of the complex mechanisms of CD by uncovering patterns embedded within the data.

Machine learning-based brain magnetic resonance imaging radiomics for identifying rapid eye movement sleep behavior disorder in Parkinson's disease patients.

Lian Y, Xu Y, Hu L, Wei Y, Wang Z

pubmed logopapersJul 1 2025
Traditional clinical diagnostic methods of rapid eye movement sleep behavior disorder (RBD) have certain limitations, especially in the early stages. This study aims to develop and validate an magnetic resonance imaging (MRI) radiomics-based machine learning classifier to accurately detect RBD patients with Parkinson's disease (PD). Data from 183 subjects, including 63 PD patients with RBD, sourced from the PPMI database were utilized in this study. The data were randomly divided into training (70%) and testing (30%) sets. Quantitative radiomic features of white matter, gray matter, and cerebrospinal fluid were extracted from whole-brain structural MRI images. Feature reduction was performed on the training set data to construct radiomics signatures. Additionally, multi-factor logistic regression analysis identified clinical predictors associated with PD-RBD, and these clinical features were integrated with the radiomics signatures to develop predictive models using various machine learning algorithms. The model exhibiting the best performance was selected, and receiver operating characteristic (ROC) curves were used to evaluate its performance in both the training and testing sets. Furthermore, based on the optimal cut-off value of the model, subjects were categorized into low- and high-risk groups, and differences in the actual number of RBD patients between the two sets were compared to assess the clinical effectiveness of the model. The radiomics signatures achieved areas under the curve (AUC) of 0.754 and 0.707 in the training and testing sets, respectively. Multi-factor logistic regression analysis revealed that postural instability was an independent predictor of PD-RBD. The random forest model, which integrated radiomics signatures with postural instability, demonstrated superior performance in predicting PD-RBD. Specifically, its AUCs in the training and testing sets were 0.917 and 0.882, with sensitivities of 0.933 and 0.889, and specificities of 0.786 and 0.722, respectively. Based on the optimal cut-off value of 0.3772, significant differences in the actual number of PD-RBD patients were observed between low-risk and high-risk groups in both the training and testing sets (P < 0.05). MRI-based radiomic signatures have the potential to serve as biomarkers for PD-RBD. The random forest model, which integrates radiomic signatures with postural instability, and shows improved performance in identifying PD-RBD. This approach offers valuable insights for prognostic evaluation and preventive treatment strategies.

MRI radiomics model for predicting tumor immune microenvironment types and efficacy of anti-PD-1/PD-L1 therapy in hepatocellular carcinoma.

Zhang R, Peng W, Wang Y, Jiang Y, Wang J, Zhang S, Li Z, Shi Y, Chen F, Feng Z, Xiao W

pubmed logopapersJul 1 2025
To improve the prediction of immune checkpoint inhibitors (ICIs) efficacy in hepatocellular carcinoma (HCC), this study categorized the tumor immune microenvironment (TIME) into two types: immune-activated (IA), characterized by a high CD8 + score and high PD-L1 combined positive score (CPS), and non-immune-activated (NIA), encompassing all other conditions. We aimed to develop an MRI-based radiomics model to predict TIME types and validate its predictive capability for ICIs efficacy in HCC patients receiving anti-PD-1/PD-L1 therapy. The study included 200 HCC patients who underwent preoperative/pretreatment multiparametric contrast-enhanced MRI (Cohort 1: 168 HCC patients with hepatectomy from two centres; Cohort 2: 42 advanced HCC patients on anti-PD-1/PD-L1 therapy). In Cohort 1, after feature selection, clinical, intratumoral radiomics, peritumoral radiomics, combined radiomics, and clinical-radiomics models were established using machine learning algorithms. In cohort 2, the clinical-radiomics model's predictive ability for ICIs efficacy was assessed. In Cohort 1, the AUC values for intratumoral, peritumoral, and combined radiomics models were 0.825, 0.809, and 0.868, respectively, in the internal validation set, and 0.73, 0.759, and 0.822 in the external validation set; the clinical-radiomics model incorporating neutrophil-to-lymphocyte ratio, tumor size, and combined radiomics score achieved an AUC of 0.887 in the internal validation set, outperforming clinical model (P = 0.049), and an AUC of 0.837 in the external validation set. In cohort 2, the clinical-radiomics model stratified patients into low- and high-score groups, demonstrating a significant difference in objective response rate (p = 0.003) and progression-free survival (p = 0.031). The clinical-radiomics model is effective in predicting TIME types and efficacy of ICIs in HCC, potentially aiding in treatment decision-making.

A multiregional multimodal machine learning model for predicting outcome of surgery for symptomatic hemorrhagic brainstem cavernous malformations.

Dong X, Gui H, Quan K, Li Z, Xiao Y, Zhou J, Zhao Y, Wang D, Liu M, Duan H, Yang S, Lin X, Dong J, Wang L, Ma Y, Zhu W

pubmed logopapersJul 1 2025
Given that resection of brainstem cavernous malformations (BSCMs) ends hemorrhaging but carries a high risk of neurological deficits, it is necessary to develop and validate a model predicting surgical outcomes. This study aimed to construct a BSCM surgery outcome prediction model based on clinical characteristics and T2-weighted MRI-based radiomics. Two separate cohorts of patients undergoing BSCM resection were included as discovery and validation sets. Patient characteristics and imaging data were analyzed. An unfavorable outcome was defined as a modified Rankin Scale score > 2 at the 12-month follow-up. Image features were extracted from regions of interest within lesions and adjacent brainstem. A nomogram was constructed using the risk score from the optimal model. The discovery and validation sets comprised 218 and 49 patients, respectively (mean age 40 ± 14 years, 127 females); 63 patients in the discovery set and 35 in the validation set had an unfavorable outcome. The eXtreme Gradient Boosting imaging model with selected radiomics features achieved the best performance (area under the receiver operating characteristic curve [AUC] 0.82). Patients were stratified into high- and low-risk groups based on risk scores computed from this model (optimal cutoff 0.37). The final integrative multimodal prognostic model attained an AUC of 0.90, surpassing both the imaging and clinical models alone. Inclusion of BSCM and brainstem subregion imaging data in machine learning models yielded significant predictive capability for unfavorable postoperative outcomes. The integration of specific clinical features enhanced prediction accuracy.

Does alignment alone predict mechanical complications after adult spinal deformity surgery? A machine learning comparison of alignment, bone quality, and soft tissue.

Sundrani S, Doss DJ, Johnson GW, Jain H, Zakieh O, Wegner AM, Lugo-Pico JG, Abtahi AM, Stephens BF, Zuckerman SL

pubmed logopapersJul 1 2025
Mechanical complications are a vexing occurrence after adult spinal deformity (ASD) surgery. While achieving ideal spinal alignment in ASD surgery is critical, alignment alone may not fully explain all mechanical complications. The authors sought to determine which combination of inputs produced the most sensitive and specific machine learning model to predict mechanical complications using postoperative alignment, bone quality, and soft tissue data. A retrospective cohort study was performed in patients undergoing ASD surgery from 2009 to 2021. Inclusion criteria were a fusion ≥ 5 levels, sagittal/coronal deformity, and at least 2 years of follow-up. The primary exposure variables were 1) alignment, evaluated in both the sagittal and coronal planes using the L1-pelvic angle ± 3°, L4-S1 lordosis, sagittal vertical axis, pelvic tilt, and coronal vertical axis; 2) bone quality, evaluated by the T-score from a dual-energy x-ray absorptiometry scan; and 3) soft tissue, evaluated by the paraspinal muscle-to-vertebral body ratio and fatty infiltration. The primary outcome was mechanical complications. Alongside demographic data in each model, 7 machine learning models with all combinations of domains (alignment, bone quality, and soft tissue) were trained. The positive predictive value (PPV) was calculated for each model. Of 231 patients (24% male) undergoing ASD surgery with a mean age of 64 ± 17 years, 147 (64%) developed at least one mechanical complication. The model with alignment alone performed poorly, with a PPV of 0.85. However, the model with alignment, bone quality, and soft tissue achieved a high PPV of 0.90, sensitivity of 0.67, and specificity of 0.84. Moreover, the model with alignment alone failed to predict 15 complications of 100, whereas the model with all three domains only failed to predict 10 of 100. These results support the notion that not every mechanical failure is explained by alignment alone. The authors found that a combination of alignment, bone quality, and soft tissue provided the most accurate prediction of mechanical complications after ASD surgery. While achieving optimal alignment is essential, additional data including bone and soft tissue are necessary to minimize mechanical complications.
Page 139 of 2432422 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.