Sort by:
Page 132 of 1391390 results

High-Performance Prompting for LLM Extraction of Compression Fracture Findings from Radiology Reports.

Kanani MM, Monawer A, Brown L, King WE, Miller ZD, Venugopal N, Heagerty PJ, Jarvik JG, Cohen T, Cross NM

pubmed logopapersMay 16 2025
Extracting information from radiology reports can provide critical data to empower many radiology workflows. For spinal compression fractures, these data can facilitate evidence-based care for at-risk populations. Manual extraction from free-text reports is laborious, and error-prone. Large language models (LLMs) have shown promise; however, fine-tuning strategies to optimize performance in specific tasks can be resource intensive. A variety of prompting strategies have achieved similar results with fewer demands. Our study pioneers the use of Meta's Llama 3.1, together with prompt-based strategies, for automated extraction of compression fractures from free-text radiology reports, outputting structured data without model training. We tested performance on a time-based sample of CT exams covering the spine from 2/20/2024 to 2/22/2024 acquired across our healthcare enterprise (637 anonymized reports, age 18-102, 47% Female). Ground truth annotations were manually generated and compared against the performance of three models (Llama 3.1 70B, Llama 3.1 8B, and Vicuna 13B) with nine different prompting configurations for a total of 27 model/prompt experiments. The highest F1 score (0.91) was achieved by the 70B Llama 3.1 model when provided with a radiologist-written background, with similar results when the background was written by a separate LLM (0.86). The addition of few-shot examples to these prompts had variable impact on F1 measurements (0.89, 0.84 respectively). Comparable ROC-AUC and PR-AUC performance was observed. Our work demonstrated that an open-weights LLM excelled at extracting compression fractures findings from free-text radiology reports using prompt-based techniques without requiring extensive manually labeled examples for model training.

Impact of sarcopenia and obesity on mortality in older adults with SARS-CoV-2 infection: automated deep learning body composition analysis in the NAPKON-SUEP cohort.

Schluessel S, Mueller B, Tausendfreund O, Rippl M, Deissler L, Martini S, Schmidmaier R, Stoecklein S, Ingrisch M, Blaschke S, Brandhorst G, Spieth P, Lehnert K, Heuschmann P, de Miranda SMN, Drey M

pubmed logopapersMay 16 2025
Severe respiratory infections pose a major challenge in clinical practice, especially in older adults. Body composition analysis could play a crucial role in risk assessment and therapeutic decision-making. This study investigates whether obesity or sarcopenia has a greater impact on mortality in patients with severe respiratory infections. The study focuses on the National Pandemic Cohort Network (NAPKON-SUEP) cohort, which includes patients over 60 years of age with confirmed severe COVID-19 pneumonia. An innovative approach was adopted, using pre-trained deep learning models for automated analysis of body composition based on routine thoracic CT scans. The study included 157 hospitalized patients (mean age 70 ± 8 years, 41% women, mortality rate 39%) from the NAPKON-SUEP cohort at 57 study sites. A pre-trained deep learning model was used to analyze body composition (muscle, bone, fat, and intramuscular fat volumes) from thoracic CT images of the NAPKON-SUEP cohort. Binary logistic regression was performed to investigate the association between obesity, sarcopenia, and mortality. Non-survivors exhibited lower muscle volume (p = 0.043), higher intramuscular fat volume (p = 0.041), and a higher BMI (p = 0.031) compared to survivors. Among all body composition parameters, muscle volume adjusted to weight was the strongest predictor of mortality in the logistic regression model, even after adjusting for factors such as sex, age, diabetes, chronic lung disease and chronic kidney disease, (odds ratio = 0.516). In contrast, BMI did not show significant differences after adjustment for comorbidities. This study identifies muscle volume derived from routine CT scans as a major predictor of survival in patients with severe respiratory infections. The results underscore the potential of AI supported CT-based body composition analysis for risk stratification and clinical decision making, not only for COVID-19 patients but also for all patients over 60 years of age with severe acute respiratory infections. The innovative application of pre-trained deep learning models opens up new possibilities for automated and standardized assessment in clinical practice.

Application of Quantitative CT and Machine Learning in the Evaluation and Diagnosis of Polymyositis/Dermatomyositis-Associated Interstitial Lung Disease.

Yang K, Chen Y, He L, Sheng Y, Hei H, Zhang J, Jin C

pubmed logopapersMay 16 2025
To investigate lung changes in patients with polymyositis/dermatomyositis-associated interstitial lung disease (PM/DM-ILD) using quantitative CT and to construct a diagnostic model to evaluate the application of quantitative CT and machine learning in diagnosing PM/DM-ILD. Chest CT images from 348 PM/DM individuals were quantitatively analyzed to obtain the lung volume (LV), mean lung density (MLD), and intrapulmonary vascular volume (IPVV) of the whole lung and each lung lobe. The percentage of high attenuation area (HAA %) was determined using the lung density histogram. Patients hospitalized from 2016 to 2021 were used as the training set (n=258), and from 2022 to 2023 were used as the temporal test set (n=90). Seven classification models were established, and their performance was evaluated through ROC analysis, decision curve analysis, calibration, and precision-recall curve. The optimal model was selected and interpreted with Python's SHAP model interpretation package. Compared to the non-ILD group, the mean lung density and percentage of high attenuation area in the whole lung and each lung lobe were significantly increased, and the lung volume and intrapulmonary vessel volume were significantly decreased in the ILD group. The Random Forest (RF) model demonstrated superior performance with the test set area under the curve of 0.843 (95% CI: 0.821-0.865), accuracy of 0.778, sensitivity of 0.784, and specificity of 0.750. Quantitative CT serves as an objective and precise method to assess pulmonary changes in PM/DM-ILD patients. The RF model based on CT quantitative parameters displayed strong diagnostic efficiency in identifying ILD, offering a new and convenient approach for evaluating and diagnosing PM/DM-ILD patients.

Enhancing Craniomaxillofacial Surgeries with Artificial Intelligence Technologies.

Do W, van Nistelrooij N, Bergé S, Vinayahalingam S

pubmed logopapersMay 16 2025
Artificial intelligence (AI) can be applied in multiple subspecialties in craniomaxillofacial (CMF) surgeries. This article overviews AI fundamentals focusing on classification, object detection, and segmentation-core tasks used in CMF applications. The article then explores the development and integration of AI in dentoalveolar surgery, implantology, traumatology, oncology, craniofacial surgery, and orthognathic and feminization surgery. It highlights AI-driven advancements in diagnosis, pre-operative planning, intra-operative assistance, post-operative management, and outcome prediction. Finally, the challenges in AI adoption are discussed, including data limitations, algorithm validation, and clinical integration.

Dual-Domain deep prior guided sparse-view CT reconstruction with multi-scale fusion attention.

Wu J, Lin J, Jiang X, Zheng W, Zhong L, Pang Y, Meng H, Li Z

pubmed logopapersMay 15 2025
Sparse-view CT reconstruction is a challenging ill-posed inverse problem, where insufficient projection data leads to degraded image quality with increased noise and artifacts. Recent deep learning approaches have shown promising results in CT reconstruction. However, existing methods often neglect projection data constraints and rely heavily on convolutional neural networks, resulting in limited feature extraction capabilities and inadequate adaptability. To address these limitations, we propose a Dual-domain deep Prior-guided Multi-scale fusion Attention (DPMA) model for sparse-view CT reconstruction, aiming to enhance reconstruction accuracy while ensuring data consistency and stability. First, we establish a residual regularization strategy that applies constraints on the difference between the prior image and target image, effectively integrating deep learning-based priors with model-based optimization. Second, we develop a multi-scale fusion attention mechanism that employs parallel pathways to simultaneously model global context, regional dependencies, and local details in a unified framework. Third, we incorporate a physics-informed consistency module based on range-null space decomposition to ensure adherence to projection data constraints. Experimental results demonstrate that DPMA achieves improved reconstruction quality compared to existing approaches, particularly in noise suppression, artifact reduction, and fine detail preservation.

Ordered-subsets Multi-diffusion Model for Sparse-view CT Reconstruction

Pengfei Yu, Bin Huang, Minghui Zhang, Weiwen Wu, Shaoyu Wang, Qiegen Liu

arxiv logopreprintMay 15 2025
Score-based diffusion models have shown significant promise in the field of sparse-view CT reconstruction. However, the projection dataset is large and riddled with redundancy. Consequently, applying the diffusion model to unprocessed data results in lower learning effectiveness and higher learning difficulty, frequently leading to reconstructed images that lack fine details. To address these issues, we propose the ordered-subsets multi-diffusion model (OSMM) for sparse-view CT reconstruction. The OSMM innovatively divides the CT projection data into equal subsets and employs multi-subsets diffusion model (MSDM) to learn from each subset independently. This targeted learning approach reduces complexity and enhances the reconstruction of fine details. Furthermore, the integration of one-whole diffusion model (OWDM) with complete sinogram data acts as a global information constraint, which can reduce the possibility of generating erroneous or inconsistent sinogram information. Moreover, the OSMM's unsupervised learning framework provides strong robustness and generalizability, adapting seamlessly to varying sparsity levels of CT sinograms. This ensures consistent and reliable performance across different clinical scenarios. Experimental results demonstrate that OSMM outperforms traditional diffusion models in terms of image quality and noise resilience, offering a powerful and versatile solution for advanced CT imaging in sparse-view scenarios.

Application of deep learning with fractal images to sparse-view CT.

Kawaguchi R, Minagawa T, Hori K, Hashimoto T

pubmed logopapersMay 15 2025
Deep learning has been widely used in research on sparse-view computed tomography (CT) image reconstruction. While sufficient training data can lead to high accuracy, collecting medical images is often challenging due to legal or ethical concerns, making it necessary to develop methods that perform well with limited data. To address this issue, we explored the use of nonmedical images for pre-training. Therefore, in this study, we investigated whether fractal images could improve the quality of sparse-view CT images, even with a reduced number of medical images. Fractal images generated by an iterated function system (IFS) were used for nonmedical images, and medical images were obtained from the CHAOS dataset. Sinograms were then generated using 36 projections in sparse-view and the images were reconstructed by filtered back-projection (FBP). FBPConvNet and WNet (first module: learning fractal images, second module: testing medical images, and third module: learning output) were used as networks. The effectiveness of pre-training was then investigated for each network. The quality of the reconstructed images was evaluated using two indices: structural similarity (SSIM) and peak signal-to-noise ratio (PSNR). The network parameters pre-trained with fractal images showed reduced artifacts compared to the network trained exclusively with medical images, resulting in improved SSIM. WNet outperformed FBPConvNet in terms of PSNR. Pre-training WNet with fractal images produced the best image quality, and the number of medical images required for main-training was reduced from 5000 to 1000 (80% reduction). Using fractal images for network training can reduce the number of medical images required for artifact reduction in sparse-view CT. Therefore, fractal images can improve accuracy even with a limited amount of training data in deep learning.

Predicting Immunotherapy Response in Unresectable Hepatocellular Carcinoma: A Comparative Study of Large Language Models and Human Experts.

Xu J, Wang J, Li J, Zhu Z, Fu X, Cai W, Song R, Wang T, Li H

pubmed logopapersMay 15 2025
Hepatocellular carcinoma (HCC) is an aggressive cancer with limited biomarkers for predicting immunotherapy response. Recent advancements in large language models (LLMs) like GPT-4, GPT-4o, and Gemini offer the potential for enhancing clinical decision-making through multimodal data analysis. However, their effectiveness in predicting immunotherapy response, especially compared to human experts, remains unclear. This study assessed the performance of GPT-4, GPT-4o, and Gemini in predicting immunotherapy response in unresectable HCC, compared to radiologists and oncologists of varying expertise. A retrospective analysis of 186 patients with unresectable HCC utilized multimodal data (clinical and CT images). LLMs were evaluated with zero-shot prompting and two strategies: the 'voting method' and the 'OR rule method' for improved sensitivity. Performance metrics included accuracy, sensitivity, area under the curve (AUC), and agreement across LLMs and physicians.GPT-4o, using the 'OR rule method,' achieved 65% accuracy and 47% sensitivity, comparable to intermediate physicians but lower than senior physicians (accuracy: 72%, p = 0.045; sensitivity: 70%, p < 0.0001). Gemini-GPT, combining GPT-4, GPT-4o, and Gemini, achieved an AUC of 0.69, similar to senior physicians (AUC: 0.72, p = 0.35), with 68% accuracy, outperforming junior and intermediate physicians while remaining comparable to senior physicians (p = 0.78). However, its sensitivity (58%) was lower than senior physicians (p = 0.0097). LLMs demonstrated higher inter-model agreement (κ = 0.59-0.70) than inter-physician agreement, especially among junior physicians (κ = 0.15). This study highlights the potential of LLMs, particularly Gemini-GPT, as valuable tools in predicting immunotherapy response for HCC.

Predicting Risk of Pulmonary Fibrosis Formation in PASC Patients

Wanying Dou, Gorkem Durak, Koushik Biswas, Ziliang Hong, Andrea Mia Bejar, Elif Keles, Kaan Akin, Sukru Mehmet Erturk, Alpay Medetalibeyoglu, Marc Sala, Alexander Misharin, Hatice Savas, Mary Salvatore, Sachin Jambawalikar, Drew Torigian, Jayaram K. Udupa, Ulas Bagci

arxiv logopreprintMay 15 2025
While the acute phase of the COVID-19 pandemic has subsided, its long-term effects persist through Post-Acute Sequelae of COVID-19 (PASC), commonly known as Long COVID. There remains substantial uncertainty regarding both its duration and optimal management strategies. PASC manifests as a diverse array of persistent or newly emerging symptoms--ranging from fatigue, dyspnea, and neurologic impairments (e.g., brain fog), to cardiovascular, pulmonary, and musculoskeletal abnormalities--that extend beyond the acute infection phase. This heterogeneous presentation poses substantial challenges for clinical assessment, diagnosis, and treatment planning. In this paper, we focus on imaging findings that may suggest fibrotic damage in the lungs, a critical manifestation characterized by scarring of lung tissue, which can potentially affect long-term respiratory function in patients with PASC. This study introduces a novel multi-center chest CT analysis framework that combines deep learning and radiomics for fibrosis prediction. Our approach leverages convolutional neural networks (CNNs) and interpretable feature extraction, achieving 82.2% accuracy and 85.5% AUC in classification tasks. We demonstrate the effectiveness of Grad-CAM visualization and radiomics-based feature analysis in providing clinically relevant insights for PASC-related lung fibrosis prediction. Our findings highlight the potential of deep learning-driven computational methods for early detection and risk assessment of PASC-related lung fibrosis--presented for the first time in the literature.

[Orthodontics in the CBCT era: 25 years later, what are the guidelines?].

Foucart JM, Papelard N, Bourriau J

pubmed logopapersMay 15 2025
CBCT has become an essential tool in orthodontics, although its use must remain judicious and evidence-based. This study provides an updated analysis of international recommendations concerning the use of CBCT in orthodontics, with a particular focus on clinical indications, radiation dose reduction, and recent technological advancements. A systematic review of guidelines published between 2015 and 2025 was conducted following the PRISMA methodology. Inclusion criteria comprised official directives from recognized scientific societies and clinical studies evaluating low dose protocols in orthodontics. The analysis of the 19 retained recommendations reveals a consensus regarding the primary indications for CBCT in orthodontics, particularly for impacted teeth, skeletal anomalies, periodontal and upper airways assessment. Dose optimization and the integration of artificial intelligence emerge as major advancements, enabling significant radiation reduction while preserving diagnostic accuracy. The development of low dose protocols and advanced reconstruction algorithms presents promising perspectives for safer and more efficient imaging, increasingly replacing conventional 2D radiographic techniques. However, an international harmonization of recommendations for these new imaging sequences is imperative to standardize clinical practices and enhance patient radioprotection.
Page 132 of 1391390 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.