Sort by:
Page 131 of 1391390 results

Evaluation of tumour pseudocapsule using computed tomography-based radiomics in pancreatic neuroendocrine tumours to predict prognosis and guide surgical strategy: a cohort study.

Wang Y, Gu W, Huang D, Zhang W, Chen Y, Xu J, Li Z, Zhou C, Chen J, Xu X, Tang W, Yu X, Ji S

pubmed logopapersMay 16 2025
To date, indications for a surgical approach of small pancreatic neuroendocrine tumours (PanNETs) remain controversial. This cohort study aimed to identify the pseudocapsule status preoperatively to estimate the rationality of enucleation and survival prognosis of PanNETs, particularly in small tumours. Clinicopathological data were collected from patients with PanNETs who underwent the first pancreatectomy at our hospital (n = 578) between February 2012 and September 2023. Kaplan-Meier curves were constructed to visualise prognostic differences. Five distinct tissue samples were obtained for single-cell RNA sequencing (scRNA-seq) to evaluate variations in the tumour microenvironment. Radiological features were extracted from preoperative arterial-phase contrast-enhanced computed tomography. The performance of the pseudocapsule radiomics model was assessed using the area under the curve (AUC) metric. 475 cases (mean [SD] age, 53.01 [12.20] years; female vs male, 1.24:1) were eligible for this study. The mean pathological diameter of tumour was 2.99 cm (median: 2.50 cm; interquartile range [IQR]: 1.50-4.00 cm). These cases were stratified into complete (223, 46.95%) and incomplete (252, 53.05%) pseudocapsule groups. A statistically significant difference in aggressive indicators was observed between the two groups (P < 0.001). Through scRNA-seq analysis, we identified that the incomplete group presented a markedly immunosuppressive microenvironment. Regarding the impact on recurrence-free survival, the 3-year and 5-year rates were 94.8% and 92.5%, respectively, for the complete pseudocapsule group, compared to 76.7% and 70.4% for the incomplete pseudocapsule group. The radiomics-predictive model has a significant discrimination for the state of the pseudocapsule, particularly in small tumours (AUC, 0.744; 95% CI, 0.652-0.837). By combining computed tomography-based radiomics and machine learning for preoperative identification of pseudocapsule status, the intact group is more likely to benefit from enucleation.

A deep learning-based approach to automated rib fracture detection and CWIS classification.

Marting V, Borren N, van Diepen MR, van Lieshout EMM, Wijffels MME, van Walsum T

pubmed logopapersMay 16 2025
Trauma-induced rib fractures are a common injury. The number and characteristics of these fractures influence whether a patient is treated nonoperatively or surgically. Rib fractures are typically diagnosed using CT scans, yet 19.2-26.8% of fractures are still missed during assessment. Another challenge in managing rib fractures is the interobserver variability in their classification. Purpose of this study was to develop and assess an automated method that detects rib fractures in CT scans, and classifies them according to the Chest Wall Injury Society (CWIS) classification. 198 CT scans were collected, of which 170 were used for training and internal validation, and 28 for external validation. Fractures and their classifications were manually annotated in each of the scans. A detection and classification network was trained for each of the three components of the CWIS classifications. In addition, a rib number labeling network was trained for obtaining the rib number of a fracture. Experiments were performed to assess the method performance. On the internal test set, the method achieved a detection sensitivity of 80%, at a precision of 87%, and an F1-score of 83%, with a mean number of FPPS (false positives per scan) of 1.11. Classification sensitivity varied, with the lowest being 25% for complex fractures and the highest being 97% for posterior fractures. The correct rib number was assigned to 94% of the detected fractures. The custom-trained nnU-Net correctly labeled 95.5% of all ribs and 98.4% of fractured ribs in 30 patients. The detection and classification performance on the external validation dataset was slightly better, with a fracture detection sensitivity of 84%, precision of 85%, F1-score of 84%, FPPS of 0.96 and 95% of the fractures were assigned the correct rib number. The method developed is able to accurately detect and classify rib fractures in CT scans, there is room for improvement in the (rare and) underrepresented classes in the training set.

Multicenter development of a deep learning radiomics and dosiomics nomogram to predict radiation pneumonia risk in non-small cell lung cancer.

Wang X, Zhang A, Yang H, Zhang G, Ma J, Ye S, Ge S

pubmed logopapersMay 16 2025
Radiation pneumonia (RP) is the most common side effect of chest radiotherapy, and can affect patients' quality of life. This study aimed to establish a combined model of radiomics, dosiomics, deep learning (DL) based on simulated location CT and dosimetry images combining with clinical parameters to improve the predictive ability of ≥ 2 grade RP (RP2) in patients with non-small cell lung cancer (NSCLC). This study retrospectively collected 245 patients with NSCLC who received radiotherapy from three hospitals. 162 patients from Hospital I were randomly divided into training cohort and internal validation cohort according to 7:3. 83 patients from two other hospitals served as an external validation cohort. Multivariate analysis was used to screen independent clinical predictors and establish clinical model (CM). The radiomic and dosiomics (RD) features and DL features were extracted from simulated location CT and dosimetry images based on the region of interest (ROI) of total lung-PTV (TL-PTV). The features screened by the t-test and least absolute shrinkage and selection operator (LASSO) were used to construct the RD and DL model, and RD-score and DL-score were calculated. RD-score, DL-score and independent clinical features were combined to establish deep learning radiomics and dosiomics nomogram (DLRDN). The model performance was evaluated by area under the curve (AUC). Three clinical factors, including V20, V30, and mean lung dose (MLD), were used to establish the CM. 7 RD features including 4 radiomics features and 3 dosiomics features were selected to establish RD model. 10 DL features were selected to establish DL model. Among the different models, DLRDN showed the best predictions, with the AUCs of 0.891 (0.826-0.957), 0.825 (0.693-0.957), and 0.801 (0.698-0.904) in the training cohort, internal validation cohort and external validation cohort, respectively. DCA showed that DLRDN had a higher overall net benefit than other models. The calibration curve showed that the predicted value of DLRDN was in good agreement with the actual value. Overall, radiomics, dosiomics, and DL features based on simulated location CT and dosimetry images have the potential to help predict RP2. The combination of multi-dimensional data produced the optimal predictive model, which could provide guidance for clinicians.

Pretrained hybrid transformer for generalizable cardiac substructures segmentation from contrast and non-contrast CTs in lung and breast cancers

Aneesh Rangnekar, Nikhil Mankuzhy, Jonas Willmann, Chloe Choi, Abraham Wu, Maria Thor, Andreas Rimner, Harini Veeraraghavan

arxiv logopreprintMay 16 2025
AI automated segmentations for radiation treatment planning (RTP) can deteriorate when applied in clinical cases with different characteristics than training dataset. Hence, we refined a pretrained transformer into a hybrid transformer convolutional network (HTN) to segment cardiac substructures lung and breast cancer patients acquired with varying imaging contrasts and patient scan positions. Cohort I, consisting of 56 contrast-enhanced (CECT) and 124 non-contrast CT (NCCT) scans from patients with non-small cell lung cancers acquired in supine position, was used to create oracle with all 180 training cases and balanced (CECT: 32, NCCT: 32 training) HTN models. Models were evaluated on a held-out validation set of 60 cohort I patients and 66 patients with breast cancer from cohort II acquired in supine (n=45) and prone (n=21) positions. Accuracy was measured using DSC, HD95, and dose metrics. Publicly available TotalSegmentator served as the benchmark. The oracle and balanced models were similarly accurate (DSC Cohort I: 0.80 \pm 0.10 versus 0.81 \pm 0.10; Cohort II: 0.77 \pm 0.13 versus 0.80 \pm 0.12), outperforming TotalSegmentator. The balanced model, using half the training cases as oracle, produced similar dose metrics as manual delineations for all cardiac substructures. This model was robust to CT contrast in 6 out of 8 substructures and patient scan position variations in 5 out of 8 substructures and showed low correlations of accuracy to patient size and age. A HTN demonstrated robustly accurate (geometric and dose metrics) cardiac substructures segmentation from CTs with varying imaging and patient characteristics, one key requirement for clinical use. Moreover, the model combining pretraining with balanced distribution of NCCT and CECT scans was able to provide reliably accurate segmentations under varied conditions with far fewer labeled datasets compared to an oracle model.

Research on Machine Learning Models Based on Cranial CT Scan for Assessing Prognosis of Emergency Brain Injury.

Qin J, Shen R, Fu J, Sun J

pubmed logopapersMay 16 2025
To evaluate the prognosis of patients with traumatic brain injury according to the Computed Tomography (CT) findings of skull fracture and cerebral parenchymal hemorrhage. Retrospectively collected data from adult patients who received non-surgical or surgical treatment after the first CT scan with craniocerebral injuries from January 2020 to August 2021. The radiomics features were extracted by Pyradiomics. Dimensionality reduction was then performed using the max relevance and min-redundancy algorithm (mRMR) and the least absolute shrinkage and selection operator (LASSO), with ten-fold cross-validation to select the best radiomics features. Three parsimonious machine learning classifiers, multinomial logistic regression (LR), a support vector machine (SVM), and a naive Bayes (Gaussian distribution), were used to construct radiomics models. A personalized emergency prognostic nomogram for cranial injuries was erected using a logistic regression model based on selected radiomic labels and patients' baseline information at emergency admission. The mRMR algorithm and the LASSO regression model finally extracted 22 top-ranked radiological features and based on these image histological features, the emergency brain injury prediction model was built with SVM, LG, and naive Bayesian classifiers, respectively. The SVM model showed the largest AUC area in training cohort for the three classifications, indicating that the SVM model is more stable and accurate. Moreover, a nomogram prediction model for GOS prognostic score in patients was constructed. We established a nomogram for predicting patients' prognosis through radiomic features and clinical characteristics, provides some data support and guidance for clinical prediction of patients' brain injury prognosis and intervention.

Automated Real-time Assessment of Intracranial Hemorrhage Detection AI Using an Ensembled Monitoring Model (EMM)

Zhongnan Fang, Andrew Johnston, Lina Cheuy, Hye Sun Na, Magdalini Paschali, Camila Gonzalez, Bonnie A. Armstrong, Arogya Koirala, Derrick Laurel, Andrew Walker Campion, Michael Iv, Akshay S. Chaudhari, David B. Larson

arxiv logopreprintMay 16 2025
Artificial intelligence (AI) tools for radiology are commonly unmonitored once deployed. The lack of real-time case-by-case assessments of AI prediction confidence requires users to independently distinguish between trustworthy and unreliable AI predictions, which increases cognitive burden, reduces productivity, and potentially leads to misdiagnoses. To address these challenges, we introduce Ensembled Monitoring Model (EMM), a framework inspired by clinical consensus practices using multiple expert reviews. Designed specifically for black-box commercial AI products, EMM operates independently without requiring access to internal AI components or intermediate outputs, while still providing robust confidence measurements. Using intracranial hemorrhage detection as our test case on a large, diverse dataset of 2919 studies, we demonstrate that EMM successfully categorizes confidence in the AI-generated prediction, suggesting different actions and helping improve the overall performance of AI tools to ultimately reduce cognitive burden. Importantly, we provide key technical considerations and best practices for successfully translating EMM into clinical settings.

Patient-Specific Dynamic Digital-Physical Twin for Coronary Intervention Training: An Integrated Mixed Reality Approach

Shuo Wang, Tong Ren, Nan Cheng, Rong Wang, Li Zhang

arxiv logopreprintMay 16 2025
Background and Objective: Precise preoperative planning and effective physician training for coronary interventions are increasingly important. Despite advances in medical imaging technologies, transforming static or limited dynamic imaging data into comprehensive dynamic cardiac models remains challenging. Existing training systems lack accurate simulation of cardiac physiological dynamics. This study develops a comprehensive dynamic cardiac model research framework based on 4D-CTA, integrating digital twin technology, computer vision, and physical model manufacturing to provide precise, personalized tools for interventional cardiology. Methods: Using 4D-CTA data from a 60-year-old female with three-vessel coronary stenosis, we segmented cardiac chambers and coronary arteries, constructed dynamic models, and implemented skeletal skinning weight computation to simulate vessel deformation across 20 cardiac phases. Transparent vascular physical models were manufactured using medical-grade silicone. We developed cardiac output analysis and virtual angiography systems, implemented guidewire 3D reconstruction using binocular stereo vision, and evaluated the system through angiography validation and CABG training applications. Results: Morphological consistency between virtual and real angiography reached 80.9%. Dice similarity coefficients for guidewire motion ranged from 0.741-0.812, with mean trajectory errors below 1.1 mm. The transparent model demonstrated advantages in CABG training, allowing direct visualization while simulating beating heart challenges. Conclusion: Our patient-specific digital-physical twin approach effectively reproduces both anatomical structures and dynamic characteristics of coronary vasculature, offering a dynamic environment with visual and tactile feedback valuable for education and clinical planning.

Deep learning progressive distill for predicting clinical response to conversion therapy from preoperative CT images of advanced gastric cancer patients.

Han S, Zhang T, Deng W, Han S, Wu H, Jiang B, Xie W, Chen Y, Deng T, Wen X, Liu N, Fan J

pubmed logopapersMay 16 2025
Identifying patients suitable for conversion therapy through early non-invasive screening is crucial for tailoring treatment in advanced gastric cancer (AGC). This study aimed to develop and validate a deep learning method, utilizing preoperative computed tomography (CT) images, to predict the response to conversion therapy in AGC patients. This retrospective study involved 140 patients. We utilized Progressive Distill (PD) methodology to construct a deep learning model for predicting clinical response to conversion therapy based on preoperative CT images. Patients in the training set (n = 112) and in the test set (n = 28) were sourced from The First Affiliated Hospital of Wenzhou Medical University between September 2017 and November 2023. Our PD models' performance was compared with baseline models and those utilizing Knowledge Distillation (KD), with evaluation metrics including accuracy, sensitivity, specificity, receiver operating characteristic curves, areas under the receiver operating characteristic curve (AUCs), and heat maps. The PD model exhibited the best performance, demonstrating robust discrimination of clinical response to conversion therapy with an AUC of 0.99 and accuracy of 99.11% in the training set, and 0.87 AUC and 85.71% accuracy in the test set. Sensitivity and specificity were 97.44% and 100% respectively in the training set, 85.71% and 85.71% each in the test set, suggesting absence of discernible bias. The deep learning model of PD method accurately predicts clinical response to conversion therapy in AGC patients. Further investigation is warranted to assess its clinical utility alongside clinicopathological parameters.

Automated CT segmentation for lower extremity tissues in lymphedema evaluation using deep learning.

Na S, Choi SJ, Ko Y, Urooj B, Huh J, Cha S, Jung C, Cheon H, Jeon JY, Kim KW

pubmed logopapersMay 16 2025
Clinical assessment of lymphedema, particularly for lymphedema severity and fluid-fibrotic lesions, remains challenging with traditional methods. We aimed to develop and validate a deep learning segmentation tool for automated tissue component analysis in lower extremity CT scans. For development datasets, lower extremity CT venography scans were collected in 118 patients with gynecologic cancers for algorithm training. Reference standards were created by segmentation of fat, muscle, and fluid-fibrotic tissue components using 3D slicer. A deep learning model based on the Unet++ architecture with an EfficientNet-B7 encoder was developed and trained. Segmentation accuracy of the deep learning model was validated in an internal validation set (n = 10) and an external validation set (n = 10) using Dice similarity coefficient (DSC) and volumetric similarity (VS). A graphical user interface (GUI) tool was developed for the visualization of the segmentation results. Our deep learning algorithm achieved high segmentation accuracy. Mean DSCs for each component and all components ranged from 0.945 to 0.999 in the internal validation set and 0.946 to 0.999 in the external validation set. Similar performance was observed in the VS, with mean VSs for all components ranging from 0.97 to 0.999. In volumetric analysis, mean volumes of the entire leg and each component did not differ significantly between reference standard and deep learning measurements (p > 0.05). Our GUI displays lymphedema mapping, highlighting segmented fat, muscle, and fluid-fibrotic components in the entire leg. Our deep learning algorithm provides an automated segmentation tool enabling accurate segmentation, volume measurement of tissue component, and lymphedema mapping. Question Clinical assessment of lymphedema remains challenging, particularly for tissue segmentation and quantitative severity evaluation. Findings A deep learning algorithm achieved DSCs > 0.95 and VS > 0.97 for fat, muscle, and fluid-fibrotic components in internal and external validation datasets. Clinical relevance The developed deep learning tool accurately segments and quantifies lower extremity tissue components on CT scans, enabling automated lymphedema evaluation and mapping with high segmentation accuracy.

Artificial intelligence generated 3D body composition predicts dose modifications in patients undergoing neoadjuvant chemotherapy for rectal cancer.

Besson A, Cao K, Mardinli A, Wirth L, Yeung J, Kokelaar R, Gibbs P, Reid F, Yeung JM

pubmed logopapersMay 16 2025
Chemotherapy administration is a balancing act between giving enough to achieve the desired tumour response while limiting adverse effects. Chemotherapy dosing is based on body surface area (BSA). Emerging evidence suggests body composition plays a crucial role in the pharmacokinetic and pharmacodynamic profile of cytotoxic agents and could inform optimal dosing. This study aims to assess how lumbosacral body composition influences adverse events in patients receiving neoadjuvant chemotherapy for rectal cancer. A retrospective study (February 2013 to March 2023) examined the impact of body composition on neoadjuvant treatment outcomes for rectal cancer patients. Staging CT scans were analysed using a validated AI model to measure lumbosacral skeletal muscle (SM), intramuscular adipose tissue (IMAT), visceral adipose tissue (VAT), and subcutaneous adipose tissue volume and density. Multivariate analyses explored the relationship between body composition and chemotherapy outcomes. 242 patients were included (164 males, 78 Females), median age 63.4 years. Chemotherapy dose reductions occurred more frequently in females (26.9% vs. 15.9%, p = 0.042) and in females with greater VAT density (-82.7 vs. -89.1, p = 0.007) and SM: IMAT + VAT volume ratio (1.99 vs. 1.36, p = 0.042). BSA was a poor predictor of dose reduction (AUC 0.397, sensitivity 38%, specificity 60%) for female patients, whereas the SM: IMAT + VAT volume ratio (AUC 0.651, sensitivity 76%, specificity 61%) and VAT density (AUC 0.699, sensitivity 57%, specificity 74%) showed greater predictive ability. Body composition didn't influence dose adjustment of male patients. Lumbosacral body composition outperformed BSA in predicting adverse events in female patients with rectal cancer undergoing neoadjuvant chemotherapy.
Page 131 of 1391390 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.