Sort by:
Page 130 of 1621612 results

Deep learning-based acceleration of high-resolution compressed sense MR imaging of the hip.

Marka AW, Meurer F, Twardy V, Graf M, Ebrahimi Ardjomand S, Weiss K, Makowski MR, Gersing AS, Karampinos DC, Neumann J, Woertler K, Banke IJ, Foreman SC

pubmed logopapersJun 1 2025
To evaluate a Compressed Sense Artificial Intelligence framework (CSAI) incorporating parallel imaging, compressed sense (CS), and deep learning for high-resolution MRI of the hip, comparing it with standard-resolution CS imaging. Thirty-two patients with femoroacetabular impingement syndrome underwent 3 T MRI scans. Coronal and sagittal intermediate-weighted TSE sequences with fat saturation were acquired using CS (0.6 ×0.8 mm resolution) and CSAI (0.3 ×0.4 mm resolution) protocols in comparable acquisition times (7:49 vs. 8:07 minutes for both planes). Two readers systematically assessed the depiction of the acetabular and femoral cartilage (in five cartilage zones), labrum, ligamentum capitis femoris, and bone using a five-point Likert scale. Diagnostic confidence and abnormality detection were recorded and analyzed using the Wilcoxon signed-rank test. CSAI significantly improved the cartilage depiction across most cartilage zones compared to CS. Overall Likert scores were 4.0 ± 0.2 (CS) vs 4.2 ± 0.6 (CSAI) for reader 1 and 4.0 ± 0.2 (CS) vs 4.3 ± 0.6 (CSAI) for reader 2 (p ≤ 0.001). Diagnostic confidence increased from 3.5 ± 0.7 and 3.9 ± 0.6 (CS) to 4.0 ± 0.6 and 4.1 ± 0.7 (CSAI) for readers 1 and 2, respectively (p ≤ 0.001). More cartilage lesions were detected with CSAI, with significant improvements in diagnostic confidence in certain cartilage zones such as femoral zone C and D for both readers. Labrum and ligamentum capitis femoris depiction remained similar, while bone depiction was rated lower. No abnormalities detected in CS were missed in CSAI. CSAI provides high-resolution hip MR images with enhanced cartilage depiction without extending acquisition times, potentially enabling more precise hip cartilage assessment.

SAMBV: A fine-tuned SAM with interpolation consistency regularization for semi-supervised bi-ventricle segmentation from cardiac MRI.

Wang Y, Zhou S, Lu K, Wang Y, Zhang L, Liu W, Wang Z

pubmed logopapersJun 1 2025
The SAM (segment anything model) is a foundation model for general purpose image segmentation, however, when it comes to a specific medical application, such as segmentation of both ventricles from the 2D cardiac MRI, the results are not satisfactory. The scarcity of labeled medical image data further increases the difficulty to apply the SAM to medical image processing. To address these challenges, we propose the SAMBV by fine-tuning the SAM for semi-supervised segmentation of bi-ventricle from the 2D cardiac MRI. The SAM is tuned in three aspects, (i) the position and feature adapters are introduced so that the SAM can adapt to bi-ventricle segmentation. (ii) a dual-branch encoder is incorporated to collect missing local feature information in SAM so as to improve bi-ventricle segmentation. (iii) the interpolation consistency regularization (ICR) semi-supervised manner is utilized, allowing the SAMBV to achieve competitive performance with only 40% of the labeled data in the ACDC dataset. Experimental results demonstrate that the proposed SAMBV achieves an average Dice score improvement of 17.6% over the original SAM, raising its performance from 74.49% to 92.09%. Furthermore, the SAMBV outperforms other supervised SAM fine-tuning methods, showing its effectiveness in semi-supervised medical image segmentation tasks. Notably, the proposed method is specifically designed for 2D MRI data.

Exploring the Limitations of Virtual Contrast Prediction in Brain Tumor Imaging: A Study of Generalization Across Tumor Types and Patient Populations.

Caragliano AN, Macula A, Colombo Serra S, Fringuello Mingo A, Morana G, Rossi A, Alì M, Fazzini D, Tedoldi F, Valbusa G, Bifone A

pubmed logopapersJun 1 2025
Accurate and timely diagnosis of brain tumors is critical for patient management and treatment planning. Magnetic resonance imaging (MRI) is a widely used modality for brain tumor detection and characterization, often aided by the administration of gadolinium-based contrast agents (GBCAs) to improve tumor visualization. Recently, deep learning models have shown remarkable success in predicting contrast-enhancement in medical images, thereby reducing the need of GBCAs and potentially minimizing patient discomfort and risks. In this paper, we present a study aimed at investigating the generalization capabilities of a neural network trained to predict full contrast in brain tumor images from noncontrast MRI scans. While initial results exhibited promising performance on a specific tumor type at a certain stage using a specific dataset, our attempts to extend this success to other tumor types and diverse patient populations yielded unexpected challenges and limitations. Through a rigorous analysis of the factor contributing to these negative results, we aim to shed light on the complexities associated with generalizing contrast enhancement prediction in medical brain tumor imaging, offering valuable insights for future research and clinical applications.

Evolution of Cortical Lesions and Function-Specific Cognitive Decline in People With Multiple Sclerosis.

Krijnen EA, Jelgerhuis J, Van Dam M, Bouman PM, Barkhof F, Klawiter EC, Hulst HE, Strijbis EMM, Schoonheim MM

pubmed logopapersJun 1 2025
Cortical lesions in multiple sclerosis (MS) severely affect cognition, but their longitudinal evolution and impact on specific cognitive functions remain understudied. This study investigates the evolution of function-specific cognitive functioning over 10 years in people with MS and assesses the influence of cortical lesion load and formation on these trajectories. In this prospectively collected study, people with MS underwent 3T MRI (T1 and fluid-attenuated inversion recovery) at 3 study visits between 2008 and 2022. Cognitive functioning was evaluated based on neuropsychological assessment reflecting 7 cognitive functions: attention; executive functioning (EF); information processing speed (IPS); verbal fluency; and verbal, visuospatial, and working memory. Cortical lesions were manually identified on artificial intelligence-generated double-inversion recovery images. Linear mixed models were constructed to assess the temporal evolution between cortical lesion load and function-specific cognitive decline. In addition, analyses were stratified by MS disease stage: early and late relapsing-remitting MS (cutoff disease duration at 15 years) and progressive MS. The study included 223 people with MS (mean age, 47.8 ± 11.1 years; 153 women) and 62 healthy controls. All completed 5-year follow-up, and 37 healthy controls and 94 with MS completed 10-year follow-up. At baseline, people with MS exhibited worse functioning of IPS and working memory. Over 10 years, cognitive decline was most severe in attention, verbal memory, and EF. At baseline, people with MS had a median cortical lesion count of 7 (range 0-73), which was related to subsequent decline in attention (B[95% CI] = -0.22 [-0.40 to -0.03]) and verbal fluency (B[95% CI] = -0.23[-0.37 to -0.09]). Over time, cortical lesions increased by a median count of 4 (range -2 to 71), particularly in late and progressive disease, and was related to decline in verbal fluency (B [95% CI] = -0.33 [-0.51 to -0.15]). The associations between (change in) cortical lesion load and cognitive decline were not modified by MS disease stage. Cognition worsened over 10 years, particularly affecting attention, verbal memory, and EF, while preexisting impairments were worst in other functions such as IPS. Worse baseline cognitive functioning was related to baseline cortical lesions, whereas baseline cortical lesions and cortical lesion formation were related to cognitive decline in functions less affected at baseline. Accumulating cortical damage leads to spreading of cognitive impairments toward additional functions.

An Intelligent Model of Segmentation and Classification Using Enhanced Optimization-Based Attentive Mask RCNN and Recurrent MobileNet With LSTM for Multiple Sclerosis Types With Clinical Brain MRI.

Gopichand G, Bhargavi KN, Ramprasad MVS, Kodavanti PV, Padmavathi M

pubmed logopapersJun 1 2025
In healthcare sector, magnetic resonance imaging (MRI) images are taken for multiple sclerosis (MS) assessment, classification, and management. However, interpreting an MRI scan requires an exceptional amount of skill because abnormalities on scans are frequently inconsistent with clinical symptoms, making it difficult to convert the findings into effective treatment strategies. Furthermore, MRI is an expensive process, and its frequent utilization to monitor an illness increases healthcare costs. To overcome these drawbacks, this research employs advanced technological approaches to develop a deep learning system for classifying types of MS through clinical brain MRI scans. The major innovation of this model is to influence the convolution network with attention concept and recurrent-based deep learning for classifying the disorder; this also proposes an optimization algorithm for tuning the parameter to enhance the performance. Initially, the total images as 3427 are collected from database, in which the collected samples are categorized for training and testing phase. Here, the segmentation is carried out by adaptive and attentive-based mask regional convolution neural network (AA-MRCNN). In this phase, the MRCNN's parameters are finely tuned with an enhanced pine cone optimization algorithm (EPCOA) to guarantee outstanding efficiency. Further, the segmented image is given to recurrent MobileNet with long short term memory (RM-LSTM) for getting the classification outcomes. Through experimental analysis, this deep learning model is acquired 95.4% for accuracy, 95.3% for sensitivity, and 95.4% for specificity. Hence, these results prove that it has high potential for appropriately classifying the sclerosis disorder.

Impact of artificial intelligence assisted lesion detection on radiologists' interpretation at multiparametric prostate MRI.

Nakrour N, Cochran RL, Mercaldo ND, Bradley W, Tsai LL, Prajapati P, Grimm R, von Busch H, Lo WC, Harisinghani MG

pubmed logopapersJun 1 2025
To compare prostate cancer lesion detection using conventional and artificial intelligence (AI)-assisted image interpretation at multiparametric MRI (mpMRI). A retrospective study of 53 consecutive patients who underwent prostate mpMRI and subsequent prostate tissue sampling was performed. Two board-certified radiologists (with 4 and 12 years of experience) blinded to the clinical information interpreted anonymized exams using the PI-RADS v2.1 framework without and with an AI-assistance tool. The AI software tool provided radiologists with gland segmentation and automated lesion detection assigning a probability score for the likelihood of the presence of clinically significant prostate cancer (csPCa). The reference standard for all cases was the prostate pathology from systematic and targeted biopsies. Statistical analyses assessed interrater agreement and compared diagnostic performances with and without AI assistance. Within the entire cohort, 42 patients (79 %) harbored Gleason-positive disease, with 25 patients (47 %) having csPCa. Radiologists' diagnostic performance for csPCa was significantly improved over conventional interpretation with AI assistance (reader A: AUC 0.82 vs. 0.72, p = 0.03; reader B: AUC 0.78 vs. 0.69, p = 0.03). Without AI assistance, 81 % (n = 36; 95 % CI: 0.89-0.91) of the lesions were scored similarly by radiologists for lesion-level characteristics, and with AI assistance, 59 % (26, 0.82-0.89) of the lesions were scored similarly. For reader A, there was a significant difference in PI-RADS scores (p = 0.02) between AI-assisted and non-assisted assessments. Signficant differences were not detected for reader B. AI-assisted prostate mMRI interpretation improved radiologist diagnostic performance over conventional interpretation independent of reader experience.

Myo-Guide: A Machine Learning-Based Web Application for Neuromuscular Disease Diagnosis With MRI.

Verdu-Diaz J, Bolano-Díaz C, Gonzalez-Chamorro A, Fitzsimmons S, Warman-Chardon J, Kocak GS, Mucida-Alvim D, Smith IC, Vissing J, Poulsen NS, Luo S, Domínguez-González C, Bermejo-Guerrero L, Gomez-Andres D, Sotoca J, Pichiecchio A, Nicolosi S, Monforte M, Brogna C, Mercuri E, Bevilacqua JA, Díaz-Jara J, Pizarro-Galleguillos B, Krkoska P, Alonso-Pérez J, Olivé M, Niks EH, Kan HE, Lilleker J, Roberts M, Buchignani B, Shin J, Esselin F, Le Bars E, Childs AM, Malfatti E, Sarkozy A, Perry L, Sudhakar S, Zanoteli E, Di Pace FT, Matthews E, Attarian S, Bendahan D, Garibaldi M, Fionda L, Alonso-Jiménez A, Carlier R, Okhovat AA, Nafissi S, Nalini A, Vengalil S, Hollingsworth K, Marini-Bettolo C, Straub V, Tasca G, Bacardit J, Díaz-Manera J

pubmed logopapersJun 1 2025
Neuromuscular diseases (NMDs) are rare disorders characterized by progressive muscle fibre loss, leading to replacement by fibrotic and fatty tissue, muscle weakness and disability. Early diagnosis is critical for therapeutic decisions, care planning and genetic counselling. Muscle magnetic resonance imaging (MRI) has emerged as a valuable diagnostic tool by identifying characteristic patterns of muscle involvement. However, the increasing complexity of these patterns complicates their interpretation, limiting their clinical utility. Additionally, multi-study data aggregation introduces heterogeneity challenges. This study presents a novel multi-study harmonization pipeline for muscle MRI and an AI-driven diagnostic tool to assist clinicians in identifying disease-specific muscle involvement patterns. We developed a preprocessing pipeline to standardize MRI fat content across datasets, minimizing source bias. An ensemble of XGBoost models was trained to classify patients based on intramuscular fat replacement, age at MRI and sex. The SHapley Additive exPlanations (SHAP) framework was adapted to analyse model predictions and identify disease-specific muscle involvement patterns. To address class imbalance, training and evaluation were conducted using class-balanced metrics. The model's performance was compared against four expert clinicians using 14 previously unseen MRI scans. Using our harmonization approach, we curated a dataset of 2961 MRI samples from genetically confirmed cases of 20 paediatric and adult NMDs. The model achieved a balanced accuracy of 64.8% ± 3.4%, with a weighted top-3 accuracy of 84.7% ± 1.8% and top-5 accuracy of 90.2% ± 2.4%. It also identified key features relevant for differential diagnosis, aiding clinical decision-making. Compared to four expert clinicians, the model obtained the highest top-3 accuracy (75.0% ± 4.8%). The diagnostic tool has been implemented as a free web platform, providing global access to the medical community. The application of AI in muscle MRI for NMD diagnosis remains underexplored due to data scarcity. This study introduces a framework for dataset harmonization, enabling advanced computational techniques. Our findings demonstrate the potential of AI-based approaches to enhance differential diagnosis by identifying disease-specific muscle involvement patterns. The developed tool surpasses expert performance in diagnostic ranking and is accessible to clinicians worldwide via the Myo-Guide online platform.

Deep learning for multiple sclerosis lesion classification and stratification using MRI.

Umirzakova S, Shakhnoza M, Sevara M, Whangbo TK

pubmed logopapersJun 1 2025
Multiple sclerosis (MS) is a chronic neurological disease characterized by inflammation, demyelination, and neurodegeneration within the central nervous system. Conventional magnetic resonance imaging (MRI) techniques often struggle to detect small or subtle lesions, particularly in challenging regions such as the cortical gray matter and brainstem. This study introduces a novel deep learning-based approach, combined with a robust preprocessing pipeline and optimized MRI protocols, to improve the precision of MS lesion classification and stratification. We designed a convolutional neural network (CNN) architecture specifically tailored for high-resolution T2-weighted imaging (T2WI), augmented by deep learning-based reconstruction (DLR) techniques. The model incorporates dual attention mechanisms, including spatial and channel attention modules, to enhance feature extraction. A comprehensive preprocessing pipeline was employed, featuring bias field correction, skull stripping, image registration, and intensity normalization. The proposed framework was trained and validated on four publicly available datasets and evaluated using precision, sensitivity, specificity, and area under the curve (AUC) metrics. The model demonstrated exceptional performance, achieving a precision of 96.27 %, sensitivity of 95.54 %, specificity of 94.70 %, and an AUC of 0.975. It outperformed existing state-of-the-art methods, particularly in detecting lesions in underdiagnosed regions such as the cortical gray matter and brainstem. The integration of advanced attention mechanisms enabled the model to focus on critical MRI features, leading to significant improvements in lesion classification and stratification. This study presents a novel and scalable approach for MS lesion detection and classification, offering a practical solution for clinical applications. By integrating advanced deep learning techniques with optimized MRI protocols, the proposed framework achieves superior diagnostic accuracy and generalizability, paving the way for enhanced patient care and more personalized treatment strategies. This work sets a new benchmark for MS diagnosis and management in both research and clinical practice.

WAND: Wavelet Analysis-Based Neural Decomposition of MRS Signals for Artifact Removal.

Merkofer JP, van de Sande DMJ, Amirrajab S, Min Nam K, van Sloun RJG, Bhogal AA

pubmed logopapersJun 1 2025
Accurate quantification of metabolites in magnetic resonance spectroscopy (MRS) is challenged by low signal-to-noise ratio (SNR), overlapping metabolites, and various artifacts. Particularly, unknown and unparameterized baseline effects obscure the quantification of low-concentration metabolites, limiting MRS reliability. This paper introduces wavelet analysis-based neural decomposition (WAND), a novel data-driven method designed to decompose MRS signals into their constituent components: metabolite-specific signals, baseline, and artifacts. WAND takes advantage of the enhanced separability of these components within the wavelet domain. The method employs a neural network, specifically a U-Net architecture, trained to predict masks for wavelet coefficients obtained through the continuous wavelet transform. These masks effectively isolate desired signal components in the wavelet domain, which are then inverse-transformed to obtain separated signals. Notably, an artifact mask is created by inverting the sum of all known signal masks, enabling WAND to capture and remove even unpredictable artifacts. The effectiveness of WAND in achieving accurate decomposition is demonstrated through numerical evaluations using simulated spectra. Furthermore, WAND's artifact removal capabilities significantly enhance the quantification accuracy of linear combination model fitting. The method's robustness is further validated using data from the 2016 MRS Fitting Challenge and in vivo experiments.

A magnetic resonance imaging (MRI)-based deep learning radiomics model predicts recurrence-free survival in lung cancer patients after surgical resection of brain metastases.

Li B, Li H, Chen J, Xiao F, Fang X, Guo R, Liang M, Wu Z, Mao J, Shen J

pubmed logopapersJun 1 2025
To develop and validate a magnetic resonance imaging (MRI)-based deep learning radiomics model (DLRM) to predict recurrence-free survival (RFS) in lung cancer patients after surgical resection of brain metastases (BrMs). A total of 215 lung cancer patients with BrMs confirmed by surgical pathology were retrospectively included in five centres, 167 patients were assigned to the training cohort, and 48 to the external test cohort. All patients underwent regular follow-up brain MRIs. Clinical and morphological MRI models for predicting RFS were built using univariate and multivariate Cox regressions, respectively. Handcrafted and deep learning (DL) signatures were constructed from BrMs pretreatment MR images using the least absolute shrinkage and selection operator (LASSO) method, respectively. A DLRM was established by integrating the clinical and morphological MRI predictors, handcrafted and DL signatures based on the multivariate Cox regression coefficients. The Harrell C-index, area under the receiver operating characteristic curve (AUC), and Kaplan-Meier's survival analysis were used to evaluate model performance. The DLRM showed satisfactory performance in predicting RFS and 6- to 18-month intracranial recurrence in lung cancer patients after BrMs resection, achieving a C-index of 0.79 and AUCs of 0.84-0.90 in the training set and a C-index of 0.74 and AUCs of 0.71-0.85 in the external test set. The DLRM outperformed the clinical model, morphological MRI model, handcrafted signature, DL signature, and clinical-morphological MRI model in predicting RFS (P < 0.05). The DLRM successfully classified patients into high-risk and low-risk intracranial recurrence groups (P < 0.001). This MRI-based DLRM could predict RFS in lung cancer patients after surgical resection of BrMs.
Page 130 of 1621612 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.