GAN-based synthetic FDG PET images from T1 brain MRI can serve to improve performance of deep unsupervised anomaly detection models.
Zotova D, Pinon N, Trombetta R, Bouet R, Jung J, Lartizien C
Zotova D, Pinon N, Trombetta R, Bouet R, Jung J, Lartizien C
Du X, Zhang X, Chen J, Li L
Zhang Z, Mohsenzadeh Y
Golhar MV, Bobrow TL, Ngamruengphong S, Durr NJ
Wang H, Wu Y, Wang Y, Wei D, Wu X, Ma J, Zheng Y
Imrie F, Denner S, Brunschwig LS, Maier-Hein K, van der Schaar M
Thieme, A. H., Miri, T., Marra, A. R., Kobayashi, T., Rodriguez-Nava, G., Li, Y., Barba, T., Er, A. G., Benzler, J., Gertler, M., Riechers, M., Hinze, C., Zheng, Y., Pelz, K., Nagaraj, D., Chen, A., Loeser, A., Ruehle, A., Zamboglou, C., Alyahya, L., Uhlig, M., Machiraju, G., Weimann, K., Lippert, C., Conrad, T., Ma, J., Novoa, R., Moor, M., Hernandez-Boussard, T., Alawad, M., Salinas, J. L., Mittermaier, M., Gevaert, O.
Ruiming Min, Minghao Liu
Ruiming Min, Minghao Liu
Wei Dai, Peilin Chen, Chanakya Ekbote, Paul Pu Liang
Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.
We respect your privacy. Unsubscribe at any time.