Sort by:
Page 129 of 1401395 results

Large Scale MRI Collection and Segmentation of Cirrhotic Liver.

Jha D, Susladkar OK, Gorade V, Keles E, Antalek M, Seyithanoglu D, Cebeci T, Aktas HE, Kartal GD, Kaymakoglu S, Erturk SM, Velichko Y, Ladner DP, Borhani AA, Medetalibeyoglu A, Durak G, Bagci U

pubmed logopapersMay 28 2025
Liver cirrhosis represents the end stage of chronic liver disease, characterized by extensive fibrosis and nodular regeneration that significantly increases mortality risk. While magnetic resonance imaging (MRI) offers a non-invasive assessment, accurately segmenting cirrhotic livers presents substantial challenges due to morphological alterations and heterogeneous signal characteristics. Deep learning approaches show promise for automating these tasks, but progress has been limited by the absence of large-scale, annotated datasets. Here, we present CirrMRI600+, the first comprehensive dataset comprising 628 high-resolution abdominal MRI scans (310 T1-weighted and 318 T2-weighted sequences, totaling nearly 40,000 annotated slices) with expert-validated segmentation labels for cirrhotic livers. The dataset includes demographic information, clinical parameters, and histopathological validation where available. Additionally, we provide benchmark results from 11 state-of-the-art deep learning experiments to establish performance standards. CirrMRI600+ enables the development and validation of advanced computational methods for cirrhotic liver analysis, potentially accelerating progress toward automated Cirrhosis visual staging and personalized treatment planning.

Deep Separable Spatiotemporal Learning for Fast Dynamic Cardiac MRI.

Wang Z, Xiao M, Zhou Y, Wang C, Wu N, Li Y, Gong Y, Chang S, Chen Y, Zhu L, Zhou J, Cai C, Wang H, Jiang X, Guo D, Yang G, Qu X

pubmed logopapersMay 28 2025
Dynamic magnetic resonance imaging (MRI) plays an indispensable role in cardiac diagnosis. To enable fast imaging, the k-space data can be undersampled but the image reconstruction poses a great challenge of high-dimensional processing. This challenge necessitates extensive training data in deep learning reconstruction methods. In this work, we propose a novel and efficient approach, leveraging a dimension-reduced separable learning scheme that can perform exceptionally well even with highly limited training data. We design this new approach by incorporating spatiotemporal priors into the development of a Deep Separable Spatiotemporal Learning network (DeepSSL), which unrolls an iteration process of a 2D spatiotemporal reconstruction model with both temporal lowrankness and spatial sparsity. Intermediate outputs can also be visualized to provide insights into the network behavior and enhance interpretability. Extensive results on cardiac cine datasets demonstrate that the proposed DeepSSL surpasses stateof-the-art methods both visually and quantitatively, while reducing the demand for training cases by up to 75%. Additionally, its preliminary adaptability to unseen cardiac patients has been verified through a blind reader study conducted by experienced radiologists and cardiologists. Furthermore, DeepSSL enhances the accuracy of the downstream task of cardiac segmentation and exhibits robustness in prospectively undersampled real-time cardiac MRI. DeepSSL is efficient under highly limited training data and adaptive to patients and prospective undersampling. This approach holds promise in addressing the escalating demand for high-dimensional data reconstruction in MRI applications.

Development of a No-Reference CT Image Quality Assessment Method Using RadImageNet Pre-trained Deep Learning Models.

Ohashi K, Nagatani Y, Yamazaki A, Yoshigoe M, Iwai K, Uemura R, Shimomura M, Tanimura K, Ishida T

pubmed logopapersMay 27 2025
Accurate assessment of computed tomography (CT) image quality is crucial for ensuring diagnostic accuracy, optimizing imaging protocols, and preventing excessive radiation exposure. In clinical settings, where high-quality reference images are often unavailable, developing no-reference image quality assessment (NR-IQA) methods is essential. Recently, CT-NR-IQA methods using deep learning have been widely studied; however, significant challenges remain in handling multiple degradation factors and accurately reflecting real-world degradations. To address these issues, we propose a novel CT-NR-IQA method. Our approach utilizes a dataset that combines two degradation factors (noise and blur) to train convolutional neural network (CNN) models capable of handling multiple degradation factors. Additionally, we leveraged RadImageNet pre-trained models (ResNet50, DenseNet121, InceptionV3, and InceptionResNetV2), allowing the models to learn deep features from large-scale real clinical images, thus enhancing adaptability to real-world degradations without relying on artificially degraded images. The models' performances were evaluated by measuring the correlation between the subjective scores and predicted image quality scores for both artificially degraded and real clinical image datasets. The results demonstrated positive correlations between the subjective and predicted scores for both datasets. In particular, ResNet50 showed the best performance, with a correlation coefficient of 0.910 for the artificially degraded images and 0.831 for the real clinical images. These findings indicate that the proposed method could serve as a potential surrogate for subjective assessment in CT-NR-IQA.

Automatic identification of Parkinsonism using clinical multi-contrast brain MRI: a large self-supervised vision foundation model strategy.

Suo X, Chen M, Chen L, Luo C, Kemp GJ, Lui S, Sun H

pubmed logopapersMay 27 2025
Valid non-invasive biomarkers for Parkinson's disease (PD) and Parkinson-plus syndrome (PPS) are urgently needed. Based on our recent self-supervised vision foundation model the Shift Window UNET TRansformer (Swin UNETR), which uses clinical multi-contrast whole brain MRI, we aimed to develop an efficient and practical model ('SwinClassifier') for the discrimination of PD vs PPS using routine clinical MRI scans. We used 75,861 clinical head MRI scans including T1-weighted, T2-weighted and fluid attenuated inversion recovery imaging as a pre-training dataset to develop a foundation model, using self-supervised learning with a cross-contrast context recovery task. Then clinical head MRI scans from n = 1992 participants with PD and n = 1989 participants with PPS were used as a downstream PD vs PPS classification dataset. We then assessed SwinClassifier's performance in confusion matrices compared to a comparative self-supervised vanilla Vision Transformer (ViT) autoencoder ('ViTClassifier'), and to two convolutional neural networks (DenseNet121 and ResNet50) trained from scratch. SwinClassifier showed very good performance (F1 score 0.83, 95% confidence interval [CI] [0.79-0.87], AUC 0.89) in PD vs PPS discrimination in independent test datasets (n = 173 participants with PD and n = 165 participants with PPS). This self-supervised classifier with pretrained weights outperformed the ViTClassifier and convolutional classifiers trained from scratch (F1 score 0.77-0.82, AUC 0.83-0.85). Occlusion sensitivity mapping in the correctly-classified cases (n = 160 PD and n = 114 PPS) highlighted the brain regions guiding discrimination mainly in sensorimotor and midline structures including cerebellum, brain stem, ventricle and basal ganglia. Our self-supervised digital model based on routine clinical head MRI discriminated PD vs PPS with good accuracy and sensitivity. With incremental improvements the approach may be diagnostically useful in early disease. National Key Research and Development Program of China.

Interpretable Machine Learning Models for Differentiating Glioblastoma From Solitary Brain Metastasis Using Radiomics.

Xia X, Wu W, Tan Q, Gou Q

pubmed logopapersMay 27 2025
To develop and validate interpretable machine learning models for differentiating glioblastoma (GB) from solitary brain metastasis (SBM) using radiomics features from contrast-enhanced T1-weighted MRI (CE-T1WI), and to compare the impact of low-order and high-order features on model performance. A cohort of 434 patients with histopathologically confirmed GB (226 patients) and SBM (208 patients) was retrospectively analyzed. Radiomic features were derived from CE-T1WI, with feature selection conducted through minimum redundancy maximum relevance and least absolute shrinkage and selection operator regression. Machine learning models, including GradientBoost and lightGBM (LGBM), were trained using low-order and high-order features. The performance of the models was assessed through receiver operating characteristic analysis and computation of the area under the curve, along with other indicators, including accuracy, specificity, and sensitivity. SHapley Additive Explanations (SHAP) analysis is used to measure the influence of each feature on the model's predictions. The performances of various machine learning models on both the training and validation datasets were notably different. For the training group, the LGBM, CatBoost, multilayer perceptron (MLP), and GradientBoost models achieved the highest AUC scores, all exceeding 0.9, demonstrating strong discriminative power. The LGBM model exhibited the best stability, with a minimal AUC difference of only 0.005 between the training and test sets, suggesting strong generalizability. Among the validation group results, the GradientBoost classifier achieved the maximum AUC of 0.927, closely followed by random forest at 0.925. GradientBoost also demonstrated high sensitivity (0.911) and negative predictive value (NPV, 0.889), effectively identifying true positives. The LGBM model showed the highest test accuracy (86.2%) and performed excellently in terms of sensitivity (0.911), NPV (0.895), and positive predictive value (PPV, 0.837). The models utilizing high-order features outperformed those based on low-order features in all the metrics. SHAP analysis further enhances model interpretability, providing insights into feature importance and contributions to classification decisions. Machine learning techniques based on radiomics can effectively distinguish GB from SBM, with gradient boosting tree-based models such as LGBMs demonstrating superior performance. High-order features significantly improve model accuracy and robustness. SHAP technology enhances the interpretability and transparency of models for distinguishing brain tumors, providing intuitive visualization of the contribution of radiomic features to classification.

An orchestration learning framework for ultrasound imaging: Prompt-Guided Hyper-Perception and Attention-Matching Downstream Synchronization.

Lin Z, Li S, Wang S, Gao Z, Sun Y, Lam CT, Hu X, Yang X, Ni D, Tan T

pubmed logopapersMay 27 2025
Ultrasound imaging is pivotal in clinical diagnostics due to its affordability, portability, safety, real-time capability, and non-invasive nature. It is widely utilized for examining various organs, such as the breast, thyroid, ovary, cardiac, and more. However, the manual interpretation and annotation of ultrasound images are time-consuming and prone to variability among physicians. While single-task artificial intelligence (AI) solutions have been explored, they are not ideal for scaling AI applications in medical imaging. Foundation models, although a trending solution, often struggle with real-world medical datasets due to factors such as noise, variability, and the incapability of flexibly aligning prior knowledge with task adaptation. To address these limitations, we propose an orchestration learning framework named PerceptGuide for general-purpose ultrasound classification and segmentation. Our framework incorporates a novel orchestration mechanism based on prompted hyper-perception, which adapts to the diverse inductive biases required by different ultrasound datasets. Unlike self-supervised pre-trained models, which require extensive fine-tuning, our approach leverages supervised pre-training to directly capture task-relevant features, providing a stronger foundation for multi-task and multi-organ ultrasound imaging. To support this research, we compiled a large-scale Multi-task, Multi-organ public ultrasound dataset (M<sup>2</sup>-US), featuring images from 9 organs and 16 datasets, encompassing both classification and segmentation tasks. Our approach employs four specific prompts-Object, Task, Input, and Position-to guide the model, ensuring task-specific adaptability. Additionally, a downstream synchronization training stage is introduced to fine-tune the model for new data, significantly improving generalization capabilities and enabling real-world applications. Experimental results demonstrate the robustness and versatility of our framework in handling multi-task and multi-organ ultrasound image processing, outperforming both specialist models and existing general AI solutions. Compared to specialist models, our method improves segmentation from 82.26% to 86.45%, classification from 71.30% to 79.08%, while also significantly reducing model parameters.

Improving Breast Cancer Diagnosis in Ultrasound Images Using Deep Learning with Feature Fusion and Attention Mechanism.

Asif S, Yan Y, Feng B, Wang M, Zheng Y, Jiang T, Fu R, Yao J, Lv L, Song M, Sui L, Yin Z, Wang VY, Xu D

pubmed logopapersMay 27 2025
Early detection of malignant lesions in ultrasound images is crucial for effective cancer diagnosis and treatment. While traditional methods rely on radiologists, deep learning models can improve accuracy, reduce errors, and enhance efficiency. This study explores the application of a deep learning model for classifying benign and malignant lesions, focusing on its performance and interpretability. In this study, we proposed a feature fusion-based deep learning model for classifying benign and malignant lesions in ultrasound images. The model leverages advanced architectures such as MobileNetV2 and DenseNet121, enhanced with feature fusion and attention mechanisms to boost classification accuracy. The clinical dataset comprises 2171 images collected from 1758 patients between December 2020 and May 2024. Additionally, we utilized the publicly available BUSI dataset, consisting of 780 images from female patients aged 25 to 75, collected in 2018. To enhance interpretability, we applied Grad-CAM, Saliency Maps, and shapley additive explanations (SHAP) techniques to explain the model's decision-making. A comparative analysis with radiologists of varying expertise levels is also conducted. The proposed model exhibited the highest performance, achieving an AUC of 0.9320 on our private dataset and an area under the curve (AUC) of 0.9834 on the public dataset, significantly outperforming traditional deep convolutional neural network models. It also exceeded the diagnostic performance of radiologists, showcasing its potential as a reliable tool for medical image classification. The model's success can be attributed to its incorporation of advanced architectures, feature fusion, and attention mechanisms. The model's decision-making process was further clarified using interpretability techniques like Grad-CAM, Saliency Maps, and SHAP, offering insights into its ability to focus on relevant image features for accurate classification. The proposed deep learning model offers superior accuracy in classifying benign and malignant lesions in ultrasound images, outperforming traditional models and radiologists. Its strong performance, coupled with interpretability techniques, demonstrates its potential as a reliable and efficient tool for medical diagnostics. The datasets generated and analyzed during the current study are not publicly available due to the nature of this research and participants of this study, but may be available from the corresponding author on reasonable request.

Evolution of deep learning tooth segmentation from CT/CBCT images: a systematic review and meta-analysis.

Kot WY, Au Yeung SY, Leung YY, Leung PH, Yang WF

pubmed logopapersMay 26 2025
Deep learning has been utilized to segment teeth from computed tomography (CT) or cone-beam CT (CBCT). However, the performance of deep learning is unknown due to multiple models and diverse evaluation metrics. This systematic review and meta-analysis aims to evaluate the evolution and performance of deep learning in tooth segmentation. We systematically searched PubMed, Web of Science, Scopus, IEEE Xplore, arXiv.org, and ACM for studies investigating deep learning in human tooth segmentation from CT/CBCT. Included studies were assessed using the Quality Assessment of Diagnostic Accuracy Study (QUADAS-2) tool. Data were extracted for meta-analyses by random-effects models. A total of 30 studies were included in the systematic review, and 28 of them were included for meta-analyses. Various deep learning algorithms were categorized according to the backbone network, encompassing single-stage convolutional models, convolutional models with U-Net architecture, Transformer models, convolutional models with attention mechanisms, and combinations of multiple models. Convolutional models with U-Net architecture were the most commonly used deep learning algorithms. The integration of attention mechanism within convolutional models has become a new topic. 29 evaluation metrics were identified, with Dice Similarity Coefficient (DSC) being the most popular. The pooled results were 0.93 [0.93, 0.93] for DSC, 0.86 [0.85, 0.87] for Intersection over Union (IoU), 0.22 [0.19, 0.24] for Average Symmetric Surface Distance (ASSD), 0.92 [0.90, 0.94] for sensitivity, 0.71 [0.26, 1.17] for 95% Hausdorff distance, and 0.96 [0.93, 0.98] for precision. No significant difference was observed in the segmentation of single-rooted or multi-rooted teeth. No obvious correlation between sample size and segmentation performance was observed. Multiple deep learning algorithms have been successfully applied to tooth segmentation from CT/CBCT and their evolution has been well summarized and categorized according to their backbone structures. In future, studies are needed with standardized protocols and open labelled datasets.

Deep learning radiomics of left atrial appendage features for predicting atrial fibrillation recurrence.

Yin Y, Jia S, Zheng J, Wang W, Wang Z, Lin J, Lin W, Feng C, Xia S, Ge W

pubmed logopapersMay 26 2025
Structural remodeling of the left atrial appendage (LAA) is characteristic of atrial fibrillation (AF), and LAA morphology impacts radiofrequency catheter ablation (RFCA) outcomes. In this study, we aimed to develop and validate a predictive model for AF ablation outcomes using LAA morphological features, deep learning (DL) radiomics, and clinical variables. In this multicenter retrospective study, 480 consecutive patients who underwent RFCA for AF at three tertiary hospitals between January 2016 and December 2022 were analyzed, with follow-up through December 2023. Preprocedural CT angiography (CTA) images and laboratory data were systematically collected. LAA segmentation was performed using an nnUNet-based model, followed by radiomic feature extraction. Cox proportional hazard regression analysis assessed the relationship between AF recurrence and LAA volume. The dataset was randomly split into training (70%) and validation (30%) cohorts using stratified sampling. An AF recurrence prediction model integrating LAA DL radiomics with clinical variables was developed. The cohort had a median follow-up of 22 months (IQR 15-32), with 103 patients (21.5%) experiencing AF recurrence. The nnUNet segmentation model achieved a Dice coefficient of 0.89. Multivariate analysis showed that LAA volume was associated with a 5.8% increase in hazard risk per unit increase (aHR 1.058, 95% CI 1.021-1.095; p = 0.002). The model combining LAA DL radiomics with clinical variables demonstrated an AUC of 0.92 (95% CI 0.87-0.96) in the test set, maintaining robust predictive performance across subgroups. LAA morphology and volume are strongly linked to AF RFCA outcomes. We developed an LAA segmentation network and a predictive model that combines DL radiomics and clinical variables to estimate the probability of AF recurrence.

The extent of Skeletal muscle wasting in prolonged critical illness and its association with survival: insights from a retrospective single-center study.

Kolck J, Hosse C, Fehrenbach U, Beetz NL, Auer TA, Pille C, Geisel D

pubmed logopapersMay 26 2025
Muscle wasting in critically ill patients, particularly those with prolonged hospitalization, poses a significant challenge to recovery and long-term outcomes. The aim of this study was to characterize long-term muscle wasting trajectories in ICU patients with acute respiratory distress syndrome (ARDS) due to COVID-19 and acute pancreatitis (AP), to evaluate correlations between muscle wasting and patient outcomes, and to identify clinically feasible thresholds that have the potential to enhance patient care strategies. A collective of 154 ICU patients (100 AP and 54 COVID-19 ARDS) with a minimum ICU stay of 10 days and at least three abdominal CT scans were retrospectively analyzed. AI-driven segmentation of CT scans quantified changes in psoas muscle area (PMA). A mixed model analysis was used to assess the correlation between mortality and muscle wasting, Cox regression was applied to identify potential predictors of survival. Muscle loss rates, survival thresholds and outcome correlations were assessed using Kaplan-Meier and receiver operating characteristic (ROC) analyses. Muscle loss in ICU patients was most pronounced in the first two weeks, peaking at -2.42% and - 2.39% psoas muscle area (PMA) loss per day in weeks 1 and 2, respectively, followed by a progressive decline. The median total PMA loss was 48.3%, with significantly greater losses in non-survivors. Mixed model analysis confirmed correlation of muscle wasting with mortality. Cox regression identified visceral adipose tissue (VAT), sequential organ failure assessment (SOFA) score and muscle wasting as significant risk factors, while increased skeletal muscle area (SMA) was protective. ROC and Kaplan-Meier analyses showed strong correlations between PMA loss thresholds and survival, with daily loss > 4% predicting the worst survival (39.7%). To our knowledge, This is the first study to highlight the substantial progression of muscle wasting in prolonged hospitalized ICU patients. The mortality-related thresholds for muscle wasting rates identified in this study may provide a basis for clinical risk stratification. Future research should validate these findings in larger cohorts and explore strategies to mitigate muscle loss. Not applicable.
Page 129 of 1401395 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.