Sort by:
Page 127 of 3543538 results

LoRA-based methods on Unet for transfer learning in Subarachnoid Hematoma Segmentation

Cristian Minoccheri, Matthew Hodgman, Haoyuan Ma, Rameez Merchant, Emily Wittrup, Craig Williamson, Kayvan Najarian

arxiv logopreprintAug 3 2025
Aneurysmal subarachnoid hemorrhage (SAH) is a life-threatening neurological emergency with mortality rates exceeding 30%. Transfer learning from related hematoma types represents a potentially valuable but underexplored approach. Although Unet architectures remain the gold standard for medical image segmentation due to their effectiveness on limited datasets, Low-Rank Adaptation (LoRA) methods for parameter-efficient transfer learning have been rarely applied to convolutional neural networks in medical imaging contexts. We implemented a Unet architecture pre-trained on computed tomography scans from 124 traumatic brain injury patients across multiple institutions, then fine-tuned on 30 aneurysmal SAH patients from the University of Michigan Health System using 3-fold cross-validation. We developed a novel CP-LoRA method based on tensor CP-decomposition and introduced DoRA variants (DoRA-C, convDoRA, CP-DoRA) that decompose weight matrices into magnitude and directional components. We compared these approaches against existing LoRA methods (LoRA-C, convLoRA) and standard fine-tuning strategies across different modules on a multi-view Unet model. LoRA-based methods consistently outperformed standard Unet fine-tuning. Performance varied by hemorrhage volume, with all methods showing improved accuracy for larger volumes. CP-LoRA achieved comparable performance to existing methods while using significantly fewer parameters. Over-parameterization with higher ranks consistently yielded better performance than strictly low-rank adaptations. This study demonstrates that transfer learning between hematoma types is feasible and that LoRA-based methods significantly outperform conventional Unet fine-tuning for aneurysmal SAH segmentation.

Less is More: AMBER-AFNO -- a New Benchmark for Lightweight 3D Medical Image Segmentation

Andrea Dosi, Semanto Mondal, Rajib Chandra Ghosh, Massimo Brescia, Giuseppe Longo

arxiv logopreprintAug 3 2025
This work presents the results of a methodological transfer from remote sensing to healthcare, adapting AMBER -- a transformer-based model originally designed for multiband images, such as hyperspectral data -- to the task of 3D medical datacube segmentation. In this study, we use the AMBER architecture with Adaptive Fourier Neural Operators (AFNO) in place of the multi-head self-attention mechanism. While existing models rely on various forms of attention to capture global context, AMBER-AFNO achieves this through frequency-domain mixing, enabling a drastic reduction in model complexity. This design reduces the number of trainable parameters by over 80% compared to UNETR++, while maintaining a FLOPs count comparable to other state-of-the-art architectures. Model performance is evaluated on two benchmark 3D medical datasets -- ACDC and Synapse -- using standard metrics such as Dice Similarity Coefficient (DSC) and Hausdorff Distance (HD), demonstrating that AMBER-AFNO achieves competitive or superior accuracy with significant gains in training efficiency, inference speed, and memory usage.

M$^3$AD: Multi-task Multi-gate Mixture of Experts for Alzheimer's Disease Diagnosis with Conversion Pattern Modeling

Yufeng Jiang, Hexiao Ding, Hongzhao Chen, Jing Lan, Xinzhi Teng, Gerald W. Y. Cheng, Zongxi Li, Haoran Xie, Jung Sun Yoo, Jing Cai

arxiv logopreprintAug 3 2025
Alzheimer's disease (AD) progression follows a complex continuum from normal cognition (NC) through mild cognitive impairment (MCI) to dementia, yet most deep learning approaches oversimplify this into discrete classification tasks. This study introduces M$^3$AD, a novel multi-task multi-gate mixture of experts framework that jointly addresses diagnostic classification and cognitive transition modeling using structural MRI. We incorporate three key innovations: (1) an open-source T1-weighted sMRI preprocessing pipeline, (2) a unified learning framework capturing NC-MCI-AD transition patterns with demographic priors (age, gender, brain volume) for improved generalization, and (3) a customized multi-gate mixture of experts architecture enabling effective multi-task learning with structural MRI alone. The framework employs specialized expert networks for diagnosis-specific pathological patterns while shared experts model common structural features across the cognitive continuum. A two-stage training protocol combines SimMIM pretraining with multi-task fine-tuning for joint optimization. Comprehensive evaluation across six datasets comprising 12,037 T1-weighted sMRI scans demonstrates superior performance: 95.13% accuracy for three-class NC-MCI-AD classification and 99.15% for binary NC-AD classification, representing improvements of 4.69% and 0.55% over state-of-the-art approaches. The multi-task formulation simultaneously achieves 97.76% accuracy in predicting cognitive transition. Our framework outperforms existing methods using fewer modalities and offers a clinically practical solution for early intervention. Code: https://github.com/csyfjiang/M3AD.

Joint Lossless Compression and Steganography for Medical Images via Large Language Models

Pengcheng Zheng, Xiaorong Pu, Kecheng Chen, Jiaxin Huang, Meng Yang, Bai Feng, Yazhou Ren, Jianan Jiang

arxiv logopreprintAug 3 2025
Recently, large language models (LLMs) have driven promis ing progress in lossless image compression. However, di rectly adopting existing paradigms for medical images suf fers from an unsatisfactory trade-off between compression performance and efficiency. Moreover, existing LLM-based compressors often overlook the security of the compres sion process, which is critical in modern medical scenarios. To this end, we propose a novel joint lossless compression and steganography framework. Inspired by bit plane slicing (BPS), we find it feasible to securely embed privacy messages into medical images in an invisible manner. Based on this in sight, an adaptive modalities decomposition strategy is first devised to partition the entire image into two segments, pro viding global and local modalities for subsequent dual-path lossless compression. During this dual-path stage, we inno vatively propose a segmented message steganography algo rithm within the local modality path to ensure the security of the compression process. Coupled with the proposed anatom ical priors-based low-rank adaptation (A-LoRA) fine-tuning strategy, extensive experimental results demonstrate the su periority of our proposed method in terms of compression ra tios, efficiency, and security. The source code will be made publicly available.

The dosimetric impacts of ct-based deep learning autocontouring algorithm for prostate cancer radiotherapy planning dosimetric accuracy of DirectORGANS.

Dinç SÇ, Üçgül AN, Bora H, Şentürk E

pubmed logopapersAug 2 2025
In study, we aimed to dosimetrically evaluate the usability of a new generation autocontouring algorithm (DirectORGANS) that automatically identifies organs and contours them directly in the computed tomography (CT) simulator before creating prostate radiotherapy plans. The CT images of 10 patients were used in this study. The prostates, bladder, rectum, and femoral heads of 10 patients were automatically contoured based on DirectORGANS algorithm at the CT simulator. On the same CT image sets, the same target volumes and contours of organs at risk were manually contoured by an experienced physician using MRI images and used as a reference structure. The doses of manually delineated contours of the target volume and organs at risk and the doses of auto contours of the target volume and organs at risk were obtained from the dose volume histogram of the same plan. Conformity index (CI) and homogeneity index (HI) were calculated to evaluate the target volumes. In critical organ structures, V<sub>60,</sub> V<sub>65,</sub> V<sub>70</sub> for the rectum, V<sub>65,</sub> V70, V75, and V<sub>80</sub> for the bladder, and maximum doses for femoral heads were evaluated. The Mann-Whitney U test was used for statistical comparison with statistical package SPSS (P < 0.05). Compared to the doses of the manual contours (MC) with auto contours (AC), there was no significant difference between the doses of the organs at risk. However, there were statistically significant differences between HI and CI values due to differences in prostate contouring (P < 0.05). The study showed that the need for clinicians to edit target volumes using MRI before treatment planning. However, it demonstrated that delineating organs at risk was used safely without the need for correction. DirectORGANS algorithm is suitable for use in RT planning to minimize differences between physicians and shorten the duration of this contouring step.

Deep learning-driven incidental detection of vertebral fractures in cancer patients: advancing diagnostic precision and clinical management.

Mniai EM, Laletin V, Tselikas L, Assi T, Bonnet B, Camez AO, Zemmouri A, Muller S, Moussa T, Chaibi Y, Kiewsky J, Quenet S, Avare C, Lassau N, Balleyguier C, Ayobi A, Ammari S

pubmed logopapersAug 2 2025
Vertebral compression fractures (VCFs) are the most prevalent skeletal manifestations of osteoporosis in cancer patients. Yet, they are frequently missed or not reported in routine clinical radiology, adversely impacting patient outcomes and quality of life. This study evaluates the diagnostic performance of a deep-learning (DL)-based application and its potential to reduce the miss rate of incidental VCFs in a high-risk cancer population. We retrospectively analysed thoraco-abdomino-pelvic (TAP) CT scans from 1556 patients with stage IV cancer collected consecutively over a 4-month period (September-December 2023) in a tertiary cancer center. A DL-based application flagged cases positive for VCFs, which were subsequently reviewed by two expert radiologists for validation. Additionally, grade 3 fractures identified by the application were independently assessed by two expert interventional radiologists to determine their eligibility for vertebroplasty. Of the 1556 cases, 501 were flagged as positive for VCF by the application, with 436 confirmed as true positives by expert review, yielding a positive predictive value (PPV) of 87%. Common causes of false positives included sclerotic vertebral metastases, scoliosis, and vertebrae misidentification. Notably, 83.5% (364/436) of true positive VCFs were absent from radiology reports, indicating a substantial non-report rate in routine practice. Ten grade 3 fractures were overlooked or not reported by radiologists. Among them, 9 were deemed suitable for vertebroplasty by expert interventional radiologists. This study underscores the potential of DL-based applications to improve the detection of VCFs. The analyzed tool can assist radiologists in detecting more incidental vertebral fractures in adult cancer patients, optimising timely treatment and reducing associated morbidity and economic burden. Moreover, it might enhance patient access to interventional treatments such as vertebroplasty. These findings highlight the transformative role that DL can play in optimising clinical management and outcomes for osteoporosis-related VCFs in cancer patients.

Temporal consistency-aware network for renal artery segmentation in X-ray angiography.

Yang B, Li C, Fezzi S, Fan Z, Wei R, Chen Y, Tavella D, Ribichini FL, Zhang S, Sharif F, Tu S

pubmed logopapersAug 2 2025
Accurate segmentation of renal arteries from X-ray angiography videos is crucial for evaluating renal sympathetic denervation (RDN) procedures but remains challenging due to dynamic changes in contrast concentration and vessel morphology across frames. The purpose of this study is to propose TCA-Net, a deep learning model that improves segmentation consistency by leveraging local and global contextual information in angiography videos. Our approach utilizes a novel deep learning framework that incorporates two key modules: a local temporal window vessel enhancement module and a global vessel refinement module (GVR). The local module fuses multi-scale temporal-spatial features to improve the semantic representation of vessels in the current frame, while the GVR module integrates decoupled attention strategies (video-level and object-level attention) and gating mechanisms to refine global vessel information and eliminate redundancy. To further improve segmentation consistency, a temporal perception consistency loss function is introduced during training. We evaluated our model using 195 renal artery angiography sequences for development and tested it on an external dataset from 44 patients. The results demonstrate that TCA-Net achieves an F1-score of 0.8678 for segmenting renal arteries, outperforming existing state-of-the-art segmentation methods. We present TCA-Net, a deep learning-based model that significantly improves segmentation consistency for renal artery angiography videos. By effectively leveraging both local and global temporal contextual information, TCA-Net outperforms current methods and provides a reliable tool for assessing RDN procedures.

Evaluating the Efficacy of Various Deep Learning Architectures for Automated Preprocessing and Identification of Impacted Maxillary Canines in Panoramic Radiographs.

Alenezi O, Bhattacharjee T, Alseed HA, Tosun YI, Chaudhry J, Prasad S

pubmed logopapersAug 2 2025
Previously, automated cropping and a reasonable classification accuracy for distinguishing impacted and non-impacted canines were demonstrated. This study evaluates multiple convolutional neural network (CNN) architectures for improving accuracy as a step towards a fully automated software for identification of impacted maxillary canines (IMCs) in panoramic radiographs (PRs). Eight CNNs (SqueezeNet, GoogLeNet, NASNet-Mobile, ShuffleNet, VGG-16, ResNet 50, DenseNet 201, and Inception V3) were compared in terms of their ability to classify 2 groups of PRs (impacted: n = 91; and non-impacted: n = 91 maxillary canines) before pre-processing and after applying automated cropping. For the PRs with impacted and non-impacted maxillary canines, GoogLeNet achieved the highest classification performance among the tested CNN architectures. Area under the curve (AUC) values of the Receiver Operating Characteristic (ROC) analysis without preprocessing and with preprocessing were 0.9 and 0.99 respectively, compared to 0.84 and 0.96 respectively with SqueezeNet. Among the tested CNN architectures, GoogLeNet achieved the highest performance on this dataset for the automated identification of impacted maxillary canines on both cropped and uncropped PRs.

[Tips and tricks for the cytological management of cysts].

Lacoste-Collin L, Fabre M

pubmed logopapersAug 2 2025
Fine needle aspiration is a well-known procedure for the diagnosis and management of solid lesions. The approach to cystic lesions on fine needle-aspiration is becoming a popular diagnostic tool due to the increased availability of high-quality cross-sectional imaging such as computed tomography and ultrasound guided procedures like endoscopic ultrasound. Cystic lesions are closed cavities containing liquid, sometimes partially solid with various internal neoplastic and non-neoplastic components. The most frequently punctured cysts are in the neck (thyroid and salivary glands), mediastinum, breast and abdomen (pancreas and liver). The diagnostic accuracy of cytological cyst sampling is highly dependent on laboratory material management. This review highlights how to approach the main features of superficial and deep organ cysts using basic cytological techniques (direct smears, cytocentrifugation), liquid-based cytology and cell block. We show the role of a multimodal approach that can lead to a wider implementation of ancillary tests (biochemical, immunocytochemical and molecular) to improve diagnostic accuracy and clinical management of patients with cystic lesions. In the near future, artificial intelligence models will offer detection, classification and prediction capabilities for various cystic lesions. Two examples in pancreatic and thyroid cytopathology are particularly developed.

Multimodal Attention-Aware Fusion for Diagnosing Distal Myopathy: Evaluating Model Interpretability and Clinician Trust

Mohsen Abbaspour Onari, Lucie Charlotte Magister, Yaoxin Wu, Amalia Lupi, Dario Creazzo, Mattia Tordin, Luigi Di Donatantonio, Emilio Quaia, Chao Zhang, Isel Grau, Marco S. Nobile, Yingqian Zhang, Pietro Liò

arxiv logopreprintAug 2 2025
Distal myopathy represents a genetically heterogeneous group of skeletal muscle disorders with broad clinical manifestations, posing diagnostic challenges in radiology. To address this, we propose a novel multimodal attention-aware fusion architecture that combines features extracted from two distinct deep learning models, one capturing global contextual information and the other focusing on local details, representing complementary aspects of the input data. Uniquely, our approach integrates these features through an attention gate mechanism, enhancing both predictive performance and interpretability. Our method achieves a high classification accuracy on the BUSI benchmark and a proprietary distal myopathy dataset, while also generating clinically relevant saliency maps that support transparent decision-making in medical diagnosis. We rigorously evaluated interpretability through (1) functionally grounded metrics, coherence scoring against reference masks and incremental deletion analysis, and (2) application-grounded validation with seven expert radiologists. While our fusion strategy boosts predictive performance relative to single-stream and alternative fusion strategies, both quantitative and qualitative evaluations reveal persistent gaps in anatomical specificity and clinical usefulness of the interpretability. These findings highlight the need for richer, context-aware interpretability methods and human-in-the-loop feedback to meet clinicians' expectations in real-world diagnostic settings.
Page 127 of 3543538 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.