Sort by:
Page 117 of 1291284 results

Unsupervised Out-of-Distribution Detection in Medical Imaging Using Multi-Exit Class Activation Maps and Feature Masking

Yu-Jen Chen, Xueyang Li, Yiyu Shi, Tsung-Yi Ho

arxiv logopreprintMay 13 2025
Out-of-distribution (OOD) detection is essential for ensuring the reliability of deep learning models in medical imaging applications. This work is motivated by the observation that class activation maps (CAMs) for in-distribution (ID) data typically emphasize regions that are highly relevant to the model's predictions, whereas OOD data often lacks such focused activations. By masking input images with inverted CAMs, the feature representations of ID data undergo more substantial changes compared to those of OOD data, offering a robust criterion for differentiation. In this paper, we introduce a novel unsupervised OOD detection framework, Multi-Exit Class Activation Map (MECAM), which leverages multi-exit CAMs and feature masking. By utilizing mult-exit networks that combine CAMs from varying resolutions and depths, our method captures both global and local feature representations, thereby enhancing the robustness of OOD detection. We evaluate MECAM on multiple ID datasets, including ISIC19 and PathMNIST, and test its performance against three medical OOD datasets, RSNA Pneumonia, COVID-19, and HeadCT, and one natural image OOD dataset, iSUN. Comprehensive comparisons with state-of-the-art OOD detection methods validate the effectiveness of our approach. Our findings emphasize the potential of multi-exit networks and feature masking for advancing unsupervised OOD detection in medical imaging, paving the way for more reliable and interpretable models in clinical practice.

A Deep Learning-Driven Framework for Inhalation Injury Grading Using Bronchoscopy Images

Yifan Li, Alan W Pang, Jo Woon Chong

arxiv logopreprintMay 13 2025
Inhalation injuries face a challenge in clinical diagnosis and grading due to the limitations of traditional methods, such as Abbreviated Injury Score (AIS), which rely on subjective assessments and show weak correlations with clinical outcomes. This study introduces a novel deep learning-based framework for grading inhalation injuries using bronchoscopy images with the duration of mechanical ventilation as an objective metric. To address the scarcity of medical imaging data, we propose enhanced StarGAN, a generative model that integrates Patch Loss and SSIM Loss to improve synthetic images' quality and clinical relevance. The augmented dataset generated by enhanced StarGAN significantly improved classification performance when evaluated using the Swin Transformer, achieving an accuracy of 77.78%, an 11.11% improvement over the original dataset. Image quality was assessed using the Fr\'echet Inception Distance (FID), where Enhanced StarGAN achieved the lowest FID of 30.06, outperforming baseline models. Burn surgeons confirmed the realism and clinical relevance of the generated images, particularly the preservation of bronchial structures and color distribution. These results highlight the potential of enhanced StarGAN in addressing data limitations and improving classification accuracy for inhalation injury grading.

A deep learning sex-specific body composition ageing biomarker using dual-energy X-ray absorptiometry scan.

Lian J, Cai P, Huang F, Huang J, Vardhanabhuti V

pubmed logopapersMay 13 2025
Chronic diseases are closely linked to alterations in body composition, yet there is a need for reliable biomarkers to assess disease risk and progression. This study aimed to develop and validate a biological age indicator based on body composition derived from dual-energy X-ray absorptiometry (DXA) scans, offering a novel approach to evaluating health status and predicting disease outcomes. A deep learning model was trained on a reference population from the UK Biobank to estimate body composition biological age (BCBA). The model's performance was assessed across various groups, including individuals with typical and atypical body composition, those with pre-existing diseases, and those who developed diseases after DXA imaging. Key metrics such as c-index were employed to examine BCBA's diagnostic and prognostic potential for type 2 diabetes, major adverse cardiovascular events (MACE), atherosclerotic cardiovascular disease (ASCVD), and hypertension. Here we show that BCBA strongly correlates with chronic disease diagnoses and risk prediction. BCBA demonstrated significant associations with type 2 diabetes (odds ratio 1.08 for females and 1.04 for males, p < 0.0005), MACE (odds ratio 1.10 for females and 1.11 for males, p < 0.0005), ASCVD (odds ratio 1.07 for females and 1.10 for males, p < 0.0005), and hypertension (odds ratio 1.06 for females and 1.04 for males, p < 0.0005). It outperformed standard cardiovascular risk profiles in predicting MACE and ASCVD. BCBA is a promising biomarker for assessing chronic disease risk and progression, with potential to improve clinical decision-making. Its integration into routine health assessments could aid early disease detection and personalised interventions.

Deep learning diagnosis of hepatic echinococcosis based on dual-modality plain CT and ultrasound images: a large-scale, multicenter, diagnostic study.

Zhang J, Zhang J, Tang H, Meng Y, Chen X, Chen J, Chen Y

pubmed logopapersMay 12 2025
Given the current limited accuracy of imaging screening for Hepatic Echinococcosis (HCE) in under-resourced areas, the authors developed and validated a Multimodal Imaging system (HEAC) based on plain Computed Tomography (CT) combined with ultrasound for HCE screening in those areas. In this study, we developed a multimodal deep learning diagnostic system by integrating ultrasound and plain CT imaging data to differentiate hepatic echinococcosis, liver cysts, liver abscesses, and healthy liver conditions. We collected a dataset of 8979 cases spanning 18 years from eight hospitals in Xinjiang China, including both retrospective and prospective data. To enhance the robustness and generalization of the diagnostic model, after modeling CT and ultrasound images using EfficientNet3D and EfficientNet-B0, external and prospective tests were conducted, and the model's performance was compared with diagnoses made by experienced physicians. Across internal and external test sets, the fused model of CT and ultrasound consistently outperformed the individual modality models and physician diagnoses. In the prospective test set from the same center, the fusion model achieved an accuracy of 0.816, sensitivity of 0.849, specificity of 0.942, and an AUC of 0.963, significantly exceeding physician performance (accuracy 0.900, sensitivity 0.800, specificity 0.933). The external test sets across seven other centers demonstrated similar results, with the fusion model achieving an overall accuracy of 0.849, sensitivity of 0.859, specificity of 0.942, and AUC of 0.961. The multimodal deep learning diagnostic system that integrates CT and ultrasound significantly increases the diagnosis accuracy of HCE, liver cysts, and liver abscesses. It beats standard single-modal approaches and physician diagnoses by lowering misdiagnosis rates and increasing diagnostic reliability. It emphasizes the promise of multimodal imaging systems in tackling diagnostic issues in low-resource areas, opening the path for improved medical care accessibility and outcomes.

Automated scout-image-based estimation of contrast agent dosing: a deep learning approach

Schirrmeister, R., Taleb, L., Friemel, P., Reisert, M., Bamberg, F., Weiss, J., Rau, A.

medrxiv logopreprintMay 12 2025
We developed and tested a deep-learning-based algorithm for the approximation of contrast agent dosage based on computed tomography (CT) scout images. We prospectively enrolled 817 patients undergoing clinically indicated CT imaging, predominantly of the thorax and/or abdomen. Patient weight was collected by study staff prior to the examination 1) with a weight scale and 2) as self-reported. Based on the scout images, we developed an EfficientNet convolutional neural network pipeline to estimate the optimal contrast agent dose based on patient weight and provide a browser-based user interface as a versatile open-source tool to account for different contrast agent compounds. We additionally analyzed the body-weight-informative CT features by synthesizing representative examples for different weights using in-context learning and dataset distillation. The cohort consisted of 533 thoracic, 70 abdominal and 229 thoracic-abdominal CT scout scans. Self-reported patient weight was statistically significantly lower than manual measurements (75.13 kg vs. 77.06 kg; p < 10-5, Wilcoxon signed-rank test). Our pipeline predicted patient weight with a mean absolute error of 3.90 {+/-} 0.20 kg (corresponding to a roughly 4.48 - 11.70 ml difference in contrast agent depending on the agent) in 5-fold cross-validation and is publicly available at https://tinyurl.com/ct-scout-weight. Interpretability analysis revealed that both larger anatomical shape and higher overall attenuation were predictive of body weight. Our open-source deep learning pipeline allows for the automatic estimation of accurate contrast agent dosing based on scout images in routine CT imaging studies. This approach has the potential to streamline contrast agent dosing workflows, improve efficiency, and enhance patient safety by providing quick and accurate weight estimates without additional measurements or reliance on potentially outdated records. The models performance may vary depending on patient positioning and scout image quality and the approach requires validation on larger patient cohorts and other clinical centers. Author SummaryAutomation of medical workflows using AI has the potential to increase reproducibility while saving costs and time. Here, we investigated automating the estimation of the required contrast agent dosage for CT examinations. We trained a deep neural network to predict the body weight from the initial 2D CT Scout images that are required prior to the actual CT examination. The predicted weight is then converted to a contrast agent dosage based on contrast-agent-specific conversion factors. To facilitate application in clinical routine, we developed a user-friendly browser-based user interface that allows clinicians to select a contrast agent or input a custom conversion factor to receive dosage suggestions, with local data processing in the browser. We also investigate what image characteristics predict body weight and find plausible relationships such as higher attenuation and larger anatomical shapes correlating with higher body weights. Our work goes beyond prior work by implementing a single model for a variety of anatomical regions, providing an accessible user interface and investigating the predictive characteristics of the images.

LiteMIL: A Computationally Efficient Transformer-Based MIL for Cancer Subtyping on Whole Slide Images.

Kussaibi, H.

medrxiv logopreprintMay 12 2025
PurposeAccurate cancer subtyping is crucial for effective treatment; however, it presents challenges due to overlapping morphology and variability among pathologists. Although deep learning (DL) methods have shown potential, their application to gigapixel whole slide images (WSIs) is often hindered by high computational demands and the need for efficient, context-aware feature aggregation. This study introduces LiteMIL, a computationally efficient transformer-based multiple instance learning (MIL) network combined with Phikon, a pathology-tuned self-supervised feature extractor, for robust and scalable cancer subtyping on WSIs. MethodsInitially, patches were extracted from TCGA-THYM dataset (242 WSIs, six subtypes) and subsequently fed in real-time to Phikon for feature extraction. To train MILs, features were arranged into uniform bags using a chunking strategy that maintains tissue context while increasing training data. LiteMIL utilizes a learnable query vector within an optimized multi-head attention module for effective feature aggregation. The models performance was evaluated against established MIL methods on the Thymic Dataset and three additional TCGA datasets (breast, lung, and kidney cancer). ResultsLiteMIL achieved 0.89 {+/-} 0.01 F1 score and 0.99 AUC on Thymic dataset, outperforming other MILs. LiteMIL demonstrated strong generalizability across the external datasets, scoring the best on breast and kidney cancer datasets. Compared to TransMIL, LiteMIL significantly reduces training time and GPU memory usage. Ablation studies confirmed the critical role of the learnable query and layer normalization in enhancing performance and stability. ConclusionLiteMIL offers a resource-efficient, robust solution. Its streamlined architecture, combined with the compact Phikon features, makes it suitable for integrating into routine histopathological workflows, particularly in resource-limited settings.

Use of Artificial Intelligence in Recognition of Fetal Open Neural Tube Defect on Prenatal Ultrasound.

Kumar M, Arora U, Sengupta D, Nain S, Meena D, Yadav R, Perez M

pubmed logopapersMay 12 2025
To compare the axial cranial ultrasound images of normal and open neural tube defect (NTD) fetuses using a deep learning (DL) model and to assess its predictive accuracy in identifying open NTD.It was a prospective case-control study. Axial trans-thalamic fetal ultrasound images of participants with open fetal NTD and normal controls between 14 and 28 weeks of gestation were taken after consent. The images were divided into training, testing, and validation datasets randomly in the ratio of 70:15:15. The images were further processed and classified using DL convolutional neural network (CNN) transfer learning (TL) models. The TL models were trained for 50 epochs. The data was analyzed in terms of Cohen kappa score, accuracy score, area under receiver operating curve (AUROC) score, F1 score validity, sensitivity, and specificity of the test.A total of 59 cases and 116 controls were fully followed. Efficient net B0, Visual Geometry Group (VGG), and Inception V3 TL models were used. Both Efficient net B0 and VGG16 models gave similar high training and validation accuracy (100 and 95.83%, respectively). Using inception V3, the training and validation accuracy was 98.28 and 95.83%, respectively. The sensitivity and specificity of Efficient NetB0 was 100 and 89%, respectively, and was the best.The analysis of the changes in axial images of the fetal cranium using the DL model, Efficient Net B0 proved to be an effective model to be used in clinical application for the identification of open NTD. · Open spina bifida is often missed due to the nonrecognition of the lemon sign on ultrasound.. · Image classification using DL identified open spina bifida with excellent accuracy.. · The research is clinically relevant in low- and middle-income countries..

MRI-Based Diagnostic Model for Alzheimer's Disease Using 3D-ResNet.

Chen D, Yang H, Li H, He X, Mu H

pubmed logopapersMay 12 2025
Alzheimer's disease (AD), a progressive neurodegenerative disorder, is the leading cause of dementia worldwide and remains incurable once it begins. Therefore, early and accurate diagnosis is essential for effective intervention. Leveraging recent advances in deep learning, this study proposes a novel diagnostic model based on the 3D-ResNet architecture to classify three cognitive states: AD, mild cognitive impairment (MCI), and cognitively normal (CN) individuals, using MRI data. The model integrates the strengths of ResNet and 3D convolutional neural networks (3D-CNN), and incorporates a special attention mechanism(SAM) within the residual structure to enhance feature representation. The study utilized the ADNI dataset, comprising 800 brain MRI scans. The dataset was split in a 7:3 ratio for training and testing, and the network was trained using data augmentation and cross-validation strategies. The proposed model achieved 92.33% accuracy in the three-class classification task, and 97.61%, 95.83%, and 93.42% accuracy in binary classifications of AD vs. CN, AD vs. MCI, and CN vs. MCI, respectively, outperforming existing state-of-the-art methods. Furthermore, Grad-CAM heatmaps and 3D MRI reconstructions revealed that the cerebral cortex and hippocampus are critical regions for AD classification. These findings demonstrate a robust and interpretable AI-based diagnostic framework for AD, providing valuable technical support for its timely detection and clinical intervention.

Enhancing noninvasive pancreatic cystic neoplasm diagnosis with multimodal machine learning.

Huang W, Xu Y, Li Z, Li J, Chen Q, Huang Q, Wu Y, Chen H

pubmed logopapersMay 12 2025
Pancreatic cystic neoplasms (PCNs) are a complex group of lesions with a spectrum of malignancy. Accurate differentiation of PCN types is crucial for patient management, as misdiagnosis can result in unnecessary surgeries or treatment delays, affecting the quality of life. The significance of developing a non-invasive, accurate diagnostic model is underscored by the need to improve patient outcomes and reduce the impact of these conditions. We developed a machine learning model capable of accurately identifying different types of PCNs in a non-invasive manner, by using a dataset comprising 449 MRI and 568 CT scans from adult patients, spanning from 2009 to 2022. The study's results indicate that our multimodal machine learning algorithm, which integrates both clinical and imaging data, significantly outperforms single-source data algorithms. Specifically, it demonstrated state-of-the-art performance in classifying PCN types, achieving an average accuracy of 91.2%, precision of 91.7%, sensitivity of 88.9%, and specificity of 96.5%. Remarkably, for patients with mucinous cystic neoplasms (MCNs), regardless of undergoing MRI or CT imaging, the model achieved a 100% prediction accuracy rate. It indicates that our non-invasive multimodal machine learning model offers strong support for the early screening of MCNs, and represents a significant advancement in PCN diagnosis for improving clinical practice and patient outcomes. We also achieved the best results on an additional pancreatic cancer dataset, which further proves the generality of our model.

Preoperative prediction of malignant transformation in sinonasal inverted papilloma: a novel MRI-based deep learning approach.

Ding C, Wen B, Han Q, Hu N, Kang Y, Wang Y, Wang C, Zhang L, Xian J

pubmed logopapersMay 12 2025
To develop a novel MRI-based deep learning (DL) diagnostic model, utilizing multicenter large-sample data, for the preoperative differentiation of sinonasal inverted papilloma (SIP) from SIP-transformed squamous cell carcinoma (SIP-SCC). This study included 568 patients from four centers with confirmed SIP (n = 421) and SIP-SCC (n = 147). Deep learning models were built using T1WI, T2WI, and CE-T1WI. A combined model was constructed by integrating these features through an attention mechanism. The diagnostic performance of radiologists, both with and without the model's assistance, was compared. Model performance was evaluated through receiver operating characteristic (ROC) analysis, calibration curves, and decision curve analysis (DCA). The combined model demonstrated superior performance in differentiating SIP from SIP-SCC, achieving AUCs of 0.954, 0.897, and 0.859 in the training, internal validation, and external validation cohorts, respectively. It showed optimal accuracy, stability, and clinical benefit, as confirmed by Brier scores and calibration curves. The diagnostic performance of radiologists, especially for less experienced ones, was significantly improved with model assistance. The MRI-based deep learning model enhances the capability to predict malignant transformation of sinonasal inverted papilloma before surgery. By facilitating earlier diagnosis and promoting timely pathological examination or surgical intervention, this approach holds the potential to enhance patient prognosis. Questions Sinonasal inverted papilloma (SIP) is prone to malignant transformation locally, leading to poor prognosis; current diagnostic methods are invasive and inaccurate, necessitating effective preoperative differentiation. Findings The MRI-based deep learning model accurately diagnoses malignant transformations of SIP, enabling junior radiologists to achieve greater clinical benefits with the assistance of the model. Clinical relevance A novel MRI-based deep learning model enhances the capability of preoperative diagnosis of malignant transformation in sinonasal inverted papilloma, providing a non-invasive tool for personalized treatment planning.
Page 117 of 1291284 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.