Classification of Renal Lesions by Leveraging Hybrid Features from CT Images Using Machine Learning Techniques.

Authors

Kaur R,Khattar S,Singla S

Affiliations (2)

  • Thapar Institute of Engineering and Technology, Patiala, Punjab, India. [email protected].
  • Department of Computer Science, Chandigarh University, Gharuan, Mohali, Punjab, India.

Abstract

Renal cancer is amid the several reasons of increasing mortality rates globally, which can be reduced by early detection and diagnosis. The classification of lesions is based mostly on their characteristics, which include varied shape and texture properties. Computed tomography (CT) imaging is a regularly used imaging modality for study of the renal soft tissues. Furthermore, a radiologist's ability to assess a corpus of CT images is limited, which can lead to misdiagnosis of kidney lesions, which might lead to cancer progression or unnecessary chemotherapy. To address these challenges, this study presents a machine learning technique based on a novel feature vector for the automated classification of renal lesions using a multi-model texture-based feature extraction. The proposed feature vector could serve as an integral component in improving the accuracy of a computer aided diagnosis (CAD) system for identifying the texture of renal lesion and can assist physicians in order to provide more precise lesion interpretation. In this work, the authors employed different texture models for the analysis of CT scans, in order to classify benign and malignant kidney lesions. Texture analysis is performed using features such as first-order statistics (FoS), spatial gray level co-occurrence matrix (SGLCM), Fourier power spectrum (FPS), statistical feature matrix (SFM), Law's texture energy measures (TEM), gray level difference statistics (GLDS), fractal, and neighborhood gray tone difference matrix (NGTDM). Multiple texture models were utilized to quantify the renal texture patterns, which used image texture analysis on a selected region of interest (ROI) from the renal lesions. In addition, dimensionality reduction is employed to discover the most discriminative features for categorization of benign and malignant lesions, and a unique feature vector based on correlation-based feature selection, information gain, and gain ratio is proposed. Different machine learning-based classifiers were employed to test the performance of the proposed features, out of which the random forest (RF) model outperforms all other techniques to distinguish benign from malignant tumors in terms of distinct performance evaluation metrics. The final feature set is evaluated using various machine learning classifiers, with the RF model achieving the highest performance. The proposed system is validated on a dataset of 50 subjects, achieving a classification accuracy of 95.8%, outperforming other conventional models.

Topics

Journal Article

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.