Sort by:
Page 115 of 1291284 results

Synthetic Data-Enhanced Classification of Prevalent Osteoporotic Fractures Using Dual-Energy X-Ray Absorptiometry-Based Geometric and Material Parameters.

Quagliato L, Seo J, Hong J, Lee T, Chung YS

pubmed logopapersMay 14 2025
Bone fracture risk assessment for osteoporotic patients is essential for implementing early countermeasures and preventing discomfort and hospitalization. Current methodologies, such as Fracture Risk Assessment Tool (FRAX), provide a risk assessment over a 5- to 10-year period rather than evaluating the bone's current health status. The database was collected by Ajou University Medical Center from 2017 to 2021. It included 9,260 patients, aged 55 to 99, comprising 242 femur fracture (FX) cases and 9,018 non-fracture (NFX) cases. To model the association of the bone's current health status with prevalent FXs, three prediction algorithms-extreme gradient boosting (XGB), support vector machine, and multilayer perceptron-were trained using two-dimensional dual-energy X-ray absorptiometry (2D-DXA) analysis results and subsequently benchmarked. The XGB classifier, which proved most effective, was then further refined using synthetic data generated by the adaptive synthetic oversampler to balance the FX and NFX classes and enhance boundary sharpness for better classification accuracy. The XGB model trained on raw data demonstrated good prediction capabilities, with an area under the curve (AUC) of 0.78 and an F1 score of 0.71 on test cases. The inclusion of synthetic data improved classification accuracy in terms of both specificity and sensitivity, resulting in an AUC of 0.99 and an F1 score of 0.98. The proposed methodology demonstrates that current bone health can be assessed through post-processed results from 2D-DXA analysis. Moreover, it was also shown that synthetic data can help stabilize uneven databases by balancing majority and minority classes, thereby significantly improving classification performance.

Multi-Task Deep Learning for Predicting Metabolic Syndrome from Retinal Fundus Images in a Japanese Health Checkup Dataset

Itoh, T., Nishitsuka, K., Fukuma, Y., Wada, S.

medrxiv logopreprintMay 14 2025
BackgroundRetinal fundus images provide a noninvasive window into systemic health, offering opportunities for early detection of metabolic disorders such as metabolic syndrome (METS). ObjectiveThis study aimed to develop a deep learning model to predict METS from fundus images obtained during routine health checkups, leveraging a multi-task learning approach. MethodsWe retrospectively analyzed 5,000 fundus images from Japanese health checkup participants. Convolutional neural network (CNN) models were trained to classify METS status, incorporating fundus-specific data augmentation strategies and auxiliary regression tasks targeting clinical parameters such as abdominal circumference (AC). Model performance was evaluated using validation accuracy, test accuracy, and the area under the receiver operating characteristic curve (AUC). ResultsModels employing fundus-specific augmentation demonstrated more stable convergence and superior validation accuracy compared to general-purpose augmentation. Incorporating AC as an auxiliary task further enhanced performance across architectures. The final ensemble model with test-time augmentation achieved a test accuracy of 0.696 and an AUC of 0.73178. ConclusionCombining multi-task learning, fundus-specific data augmentation, and ensemble prediction substantially improves deep learning-based METS classification from fundus images. This approach may offer a practical, noninvasive screening tool for metabolic syndrome in general health checkup settings.

Total radius BMD correlates with the hip and lumbar spine BMD among post-menopausal patients with fragility wrist fracture in a machine learning model.

Ruotsalainen T, Panfilov E, Thevenot J, Tiulpin A, Saarakkala S, Niinimäki J, Lehenkari P, Valkealahti M

pubmed logopapersMay 14 2025
Osteoporosis screening should be systematic in the group of over 50-year-old females with a radius fracture. We tested a phantom combined with machine learning model and studied osteoporosis-related variables. This machine learning model for screening osteoporosis using plain radiographs requires further investigation in larger cohorts to assess its potential as a replacement for DXA measurements in settings where DXA is not available. The main purpose of this study was to improve osteoporosis screening, especially in post-menopausal patients with fragility wrist fractures. The secondary objective was to increase understanding of the connection between osteoporosis and aging, as well as other risk factors. We collected data on 83 females > 50 years old with a distal radius fracture treated at Oulu University Hospital in 2019-2020. The data included basic patient information, WHO FRAX tool, blood tests, X-ray imaging of the fractured wrist, and DXA scanning of the non-fractured forearm, both hips, and the lumbar spine. Machine learning was used in combination with a custom phantom. Eighty-five percent of the study population had osteopenia or osteoporosis. Only 28.4% of patients had increased bone resorption activity measured by ICTP values. Total radius BMD correlated with other osteoporosis-related variables (age r =  - 0.494, BMI r = 0.273, FRAX osteoporotic fracture risk r =  - 0.419, FRAX hip fracture risk r =  - 0.433, hip BMD r = 0.435, and lumbar spine BMD r = 0.645), but the ultra distal (UD) radius BMD did not. Our custom phantom combined with a machine learning model showed potential for screening osteoporosis, with the class-wise accuracies for "Osteoporotic vs. osteopenic & normal bone" of 76% and 75%, respectively. We suggest osteoporosis screening for all females over 50 years old with wrist fractures. We found that the total radius BMD correlates with the central BMD. Due to the limited sample size in the phantom and machine learning parts of the study, further research is needed to make a clinically useful tool for screening osteoporosis.

Optimizing breast lesions diagnosis and decision-making with a deep learning fusion model integrating ultrasound and mammography: a dual-center retrospective study.

Xu Z, Zhong S, Gao Y, Huo J, Xu W, Huang W, Huang X, Zhang C, Zhou J, Dan Q, Li L, Jiang Z, Lang T, Xu S, Lu J, Wen G, Zhang Y, Li Y

pubmed logopapersMay 14 2025
This study aimed to develop a BI-RADS network (DL-UM) via integrating ultrasound (US) and mammography (MG) images and explore its performance in improving breast lesion diagnosis and management when collaborating with radiologists, particularly in cases with discordant US and MG Breast Imaging Reporting and Data System (BI-RADS) classifications. We retrospectively collected image data from 1283 women with breast lesions who underwent both US and MG within one month at two medical centres and categorised them into concordant and discordant BI-RADS classification subgroups. We developed a DL-UM network via integrating US and MG images, and DL networks using US (DL-U) or MG (DL-M) alone, respectively. The performance of DL-UM network for breast lesion diagnosis was evaluated using ROC curves and compared to DL-U and DL-M networks in the external testing dataset. The diagnostic performance of radiologists with different levels of experience under the assistance of DL-UM network was also evaluated. In the external testing dataset, DL-UM outperformed DL-M in sensitivity (0.962 vs. 0.833, P = 0.016) and DL-U in specificity (0.667 vs. 0.526, P = 0.030), respectively. In the discordant BI-RADS classification subgroup, DL-UM achieved an AUC of 0.910. The diagnostic performance of four radiologists improved when collaborating with the DL-UM network, with AUCs increased from 0.674-0.772 to 0.889-0.910, specificities from 52.1%-75.0 to 81.3-87.5% and reducing unnecessary biopsies by 16.1%-24.6%, particularly for junior radiologists. Meanwhile, DL-UM outputs and heatmaps enhanced radiologists' trust and improved interobserver agreement between US and MG, with weighted kappa increased from 0.048 to 0.713 (P < 0.05). The DL-UM network, integrating complementary US and MG features, assisted radiologists in improving breast lesion diagnosis and management, potentially reducing unnecessary biopsies.

Early detection of Alzheimer's disease progression stages using hybrid of CNN and transformer encoder models.

Almalki H, Khadidos AO, Alhebaishi N, Senan EM

pubmed logopapersMay 14 2025
Alzheimer's disease (AD) is a neurodegenerative disorder that affects memory and cognitive functions. Manual diagnosis is prone to human error, often leading to misdiagnosis or delayed detection. MRI techniques help visualize the fine tissues of the brain cells, indicating the stage of disease progression. Artificial intelligence techniques analyze MRI with high accuracy and extract subtle features that are difficult to diagnose manually. In this study, a modern methodology was designed that combines the power of CNN models (ResNet101 and GoogLeNet) to extract local deep features and the power of Vision Transformer (ViT) models to extract global features and find relationships between image spots. First, the MRI images of the Open Access Imaging Studies Series (OASIS) dataset were improved by two filters: the adaptive median filter (AMF) and Laplacian filter. The ResNet101 and GoogLeNet models were modified to suit the feature extraction task and reduce computational cost. The ViT architecture was modified to reduce the computational cost while increasing the number of attention vertices to further discover global features and relationships between image patches. The enhanced images were fed into the proposed ViT-CNN methodology. The enhanced images were fed to the modified ResNet101 and GoogLeNet models to extract the deep feature maps with high accuracy. Deep feature maps were fed into the modified ViT model. The deep feature maps were partitioned into 32 feature maps using ResNet101 and 16 feature maps using GoogLeNet, both with a size of 64 features. The feature maps were encoded to recognize the spatial arrangement of the patch and preserve the relationship between patches, helping the self-attention layers distinguish between patches based on their positions. They were fed to the transformer encoder, which consisted of six blocks and multiple vertices to focus on different patterns or regions simultaneously. Finally, the MLP classification layers classify each image into one of four dataset classes. The improved ResNet101-ViT hybrid methodology outperformed the GoogLeNet-ViT hybrid methodology. ResNet101-ViT achieved 98.7% accuracy, 95.05% AUC, 96.45% precision, 99.68% sensitivity, and 97.78% specificity.

A multi-layered defense against adversarial attacks in brain tumor classification using ensemble adversarial training and feature squeezing.

Yinusa A, Faezipour M

pubmed logopapersMay 14 2025
Deep learning, particularly convolutional neural networks (CNNs), has proven valuable for brain tumor classification, aiding diagnostic and therapeutic decisions in medical imaging. Despite their accuracy, these models are vulnerable to adversarial attacks, compromising their reliability in clinical settings. In this research, we utilized a VGG16-based CNN model to classify brain tumors, achieving 96% accuracy on clean magnetic resonance imaging (MRI) data. To assess robustness, we exposed the model to Fast Gradient Sign Method (FGSM) and Projected Gradient Descent (PGD) attacks, which reduced accuracy to 32% and 13%, respectively. We then applied a multi-layered defense strategy, including adversarial training with FGSM and PGD examples and feature squeezing techniques such as bit-depth reduction and Gaussian blurring. This approach improved model resilience, achieving 54% accuracy on FGSM and 47% on PGD adversarial examples. Our results highlight the importance of proactive defense strategies for maintaining the reliability of AI in medical imaging under adversarial conditions.

Explainability Through Human-Centric Design for XAI in Lung Cancer Detection

Amy Rafferty, Rishi Ramaesh, Ajitha Rajan

arxiv logopreprintMay 14 2025
Deep learning models have shown promise in lung pathology detection from chest X-rays, but widespread clinical adoption remains limited due to opaque model decision-making. In prior work, we introduced ClinicXAI, a human-centric, expert-guided concept bottleneck model (CBM) designed for interpretable lung cancer diagnosis. We now extend that approach and present XpertXAI, a generalizable expert-driven model that preserves human-interpretable clinical concepts while scaling to detect multiple lung pathologies. Using a high-performing InceptionV3-based classifier and a public dataset of chest X-rays with radiology reports, we compare XpertXAI against leading post-hoc explainability methods and an unsupervised CBM, XCBs. We assess explanations through comparison with expert radiologist annotations and medical ground truth. Although XpertXAI is trained for multiple pathologies, our expert validation focuses on lung cancer. We find that existing techniques frequently fail to produce clinically meaningful explanations, omitting key diagnostic features and disagreeing with radiologist judgments. XpertXAI not only outperforms these baselines in predictive accuracy but also delivers concept-level explanations that better align with expert reasoning. While our focus remains on explainability in lung cancer detection, this work illustrates how human-centric model design can be effectively extended to broader diagnostic contexts - offering a scalable path toward clinically meaningful explainable AI in medical diagnostics.

Development and Validation of Ultrasound Hemodynamic-based Prediction Models for Acute Kidney Injury After Renal Transplantation.

Ni ZH, Xing TY, Hou WH, Zhao XY, Tao YL, Zhou FB, Xing YQ

pubmed logopapersMay 14 2025
Acute kidney injury (AKI) post-renal transplantation often has a poor prognosis. This study aimed to identify patients with elevated risks of AKI after kidney transplantation. A retrospective analysis was conducted on 422 patients who underwent kidney transplants from January 2020 to April 2023. Participants from 2020 to 2022 were randomized to training group (n=261) and validation group 1 (n=113), and those in 2023, as validation group 2 (n=48). Risk factors were determined by employing logistic regression analysis alongside the least absolute shrinkage and selection operator, making use of ultrasound hemodynamic, clinical, and laboratory information. Models for prediction were developed using logistic regression analysis and six machine-learning techniques. The evaluation of the logistic regression model encompassed its discrimination, calibration, and applicability in clinical settings, and a nomogram was created to illustrate the model. SHapley Additive exPlanations were used to explain and visualize the best of the six machine learning models. The least absolute shrinkage and selection operator combined with logistic regression identified and incorporated five risk factors into the predictive model. The logistic regression model (AUC=0.927 in the validation set 1; AUC=0.968 in the validation set 2) and the random forest model (AUC=0.946 in the validation set 1;AUC=0.996 in the validation set 2) showed good performance post-validation, with no significant difference in their predictive accuracy. These findings can assist clinicians in the early identification of patients at high risk for AKI, allowing for timely interventions and potentially enhancing the prognosis following kidney transplantation.

DCSNet: A Lightweight Knowledge Distillation-Based Model with Explainable AI for Lung Cancer Diagnosis from Histopathological Images

Sadman Sakib Alif, Nasim Anzum Promise, Fiaz Al Abid, Aniqua Nusrat Zereen

arxiv logopreprintMay 14 2025
Lung cancer is a leading cause of cancer-related deaths globally, where early detection and accurate diagnosis are critical for improving survival rates. While deep learning, particularly convolutional neural networks (CNNs), has revolutionized medical image analysis by detecting subtle patterns indicative of early-stage lung cancer, its adoption faces challenges. These models are often computationally expensive and require significant resources, making them unsuitable for resource constrained environments. Additionally, their lack of transparency hinders trust and broader adoption in sensitive fields like healthcare. Knowledge distillation addresses these challenges by transferring knowledge from large, complex models (teachers) to smaller, lightweight models (students). We propose a knowledge distillation-based approach for lung cancer detection, incorporating explainable AI (XAI) techniques to enhance model transparency. Eight CNNs, including ResNet50, EfficientNetB0, EfficientNetB3, and VGG16, are evaluated as teacher models. We developed and trained a lightweight student model, Distilled Custom Student Network (DCSNet) using ResNet50 as the teacher. This approach not only ensures high diagnostic performance in resource-constrained settings but also addresses transparency concerns, facilitating the adoption of AI-driven diagnostic tools in healthcare.

Recognizing artery segments on carotid ultrasonography using embedding concatenation of deep image and vision-language models.

Lo CM, Sung SF

pubmed logopapersMay 14 2025
Evaluating large artery atherosclerosis is critical for predicting and preventing ischemic strokes. Ultrasonographic assessment of the carotid arteries is the preferred first-line examination due to its ease of use, noninvasive, and absence of radiation exposure. This study proposed an automated classification model for the common carotid artery (CCA), carotid bulb, internal carotid artery (ICA), and external carotid artery (ECA) to enhance the quantification of carotid artery examinations.&#xD;Approach: A total of 2,943 B-mode ultrasound images (CCA: 1,563; bulb: 611; ICA: 476; ECA: 293) from 288 patients were collected. Three distinct sets of embedding features were extracted from artificial intelligence networks including pre-trained DenseNet201, vision Transformer (ViT), and echo contrastive language-image pre-training (EchoCLIP) models using deep learning architectures for pattern recognition. These features were then combined in a support vector machine (SVM) classifier to interpret the anatomical structures in B-mode images.&#xD;Main results: After ten-fold cross-validation, the model achieved an accuracy of 82.3%, which was significantly better than using individual feature sets, with a p-value of <0.001.&#xD;Significance: The proposed model could make carotid artery examinations more accurate and consistent with the achieved classification accuracy. The source code is available at https://github.com/buddykeywordw/Artery-Segments-Recognition&#xD.
Page 115 of 1291284 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.