Sort by:
Page 114 of 1411410 results

Phenotyping atherosclerotic plaque and perivascular adipose tissue: signalling pathways and clinical biomarkers in atherosclerosis.

Grodecki K, Geers J, Kwiecinski J, Lin A, Slipczuk L, Slomka PJ, Dweck MR, Nerlekar N, Williams MC, Berman D, Marwick T, Newby DE, Dey D

pubmed logopapersJun 1 2025
Computed tomography coronary angiography provides a non-invasive evaluation of coronary artery disease that includes phenotyping of atherosclerotic plaques and the surrounding perivascular adipose tissue (PVAT). Image analysis techniques have been developed to quantify atherosclerotic plaque burden and morphology as well as the associated PVAT attenuation, and emerging radiomic approaches can add further contextual information. PVAT attenuation might provide a novel measure of vascular health that could be indicative of the pathogenetic processes implicated in atherosclerosis such as inflammation, fibrosis or increased vascularity. Bidirectional signalling between the coronary artery and adjacent PVAT has been hypothesized to contribute to coronary artery disease progression and provide a potential novel measure of the risk of future cardiovascular events. However, despite the development of more advanced radiomic and artificial intelligence-based algorithms, studies involving large datasets suggest that the measurement of PVAT attenuation contributes only modest additional predictive discrimination to standard cardiovascular risk scores. In this Review, we explore the pathobiology of coronary atherosclerotic plaques and PVAT, describe their phenotyping with computed tomography coronary angiography, and discuss potential future applications in clinical risk prediction and patient management.

Deep Learning-Based Three-Dimensional Analysis Reveals Distinct Patterns of Condylar Remodelling After Orthognathic Surgery in Skeletal Class III Patients.

Barone S, Cevidanes L, Bianchi J, Goncalves JR, Giudice A

pubmed logopapersJun 1 2025
This retrospective study aimed to evaluate morphometric changes in mandibular condyles of patients with skeletal Class III malocclusion following two-jaw orthognathic surgery planned using virtual surgical planning (VSP) and analysed with automated three-dimensional (3D) image analysis based on deep-learning techniques. Pre-operative (T1) and 12-18 months post-operative (T2) Cone-Beam Computed Tomography (CBCT) scans of 17 patients (mean age: 24.8 ± 3.5 years) were analysed using 3DSlicer software. Deep-learning algorithms automated CBCT orientation, registration, bone segmentation, and landmark identification. By utilising voxel-based superimposition of pre- and post-operative CBCT scans and shape correspondence, the overall changes in condylar morphology were assessed, with a focus on bone resorption and apposition at specific regions (superior, lateral and medial poles). The correlation between these modifications and the extent of actual condylar movements post-surgery was investigated. Statistical analysis was conducted with a significance level of α = 0.05. Overall condylar remodelling was minimal, with mean changes of < 1 mm. Small but statistically significant bone resorption occurred at the condylar superior articular surface, while bone apposition was primarily observed at the lateral pole. The bone apposition at the lateral pole and resorption at the superior articular surface were significantly correlated with medial condylar displacement (p < 0.05). The automated 3D analysis revealed distinct patterns of condylar remodelling following orthognathic surgery in skeletal Class III patients, with minimal overall changes but significant regional variations. The correlation between condylar displacements and remodelling patterns highlights the need for precise pre-operative planning to optimise condylar positioning, potentially minimising harmful remodelling and enhancing stability.

Deep learning radiomics analysis for prediction of survival in patients with unresectable gastric cancer receiving immunotherapy.

Gou M, Zhang H, Qian N, Zhang Y, Sun Z, Li G, Wang Z, Dai G

pubmed logopapersJun 1 2025
Immunotherapy has become an option for the first-line therapy of advanced gastric cancer (GC), with improved survival. Our study aimed to investigate unresectable GC from an imaging perspective combined with clinicopathological variables to identify patients who were most likely to benefit from immunotherapy. Patients with unresectable GC who were consecutively treated with immunotherapy at two different medical centers of Chinese PLA General Hospital were included and divided into the training and validation cohorts, respectively. A deep learning neural network, using a multimodal ensemble approach based on CT imaging data before immunotherapy, was trained in the training cohort to predict survival, and an internal validation cohort was constructed to select the optimal ensemble model. Data from another cohort were used for external validation. The area under the receiver operating characteristic curve was analyzed to evaluate performance in predicting survival. Detailed clinicopathological data and peripheral blood prior to immunotherapy were collected for each patient. Univariate and multivariable logistic regression analysis of imaging models and clinicopathological variables was also applied to identify the independent predictors of survival. A nomogram based on multivariable logistic regression was constructed. A total of 79 GC patients in the training cohort and 97 patients in the external validation cohort were enrolled in this study. A multi-model ensemble approach was applied to train a model to predict the 1-year survival of GC patients. Compared to individual models, the ensemble model showed improvement in performance metrics in both the internal and external validation cohorts. There was a significant difference in overall survival (OS) among patients with different imaging models based on the optimum cutoff score of 0.5 (HR = 0.20, 95 % CI: 0.10-0.37, <i>P</i> < 0.001). Multivariate Cox regression analysis revealed that the imaging models, PD-L1 expression, and lung immune prognostic index were independent prognostic factors for OS. We combined these variables and built a nomogram. The calibration curves showed that the C-index of the nomogram was 0.85 and 0.78 in the training and validation cohorts. The deep learning model in combination with several clinical factors showed predictive value for survival in patients with unresectable GC receiving immunotherapy.

PEDRA-EFB0: colorectal cancer prognostication using deep learning with patch embeddings and dual residual attention.

Zhao Z, Wang H, Wu D, Zhu Q, Tan X, Hu S, Ge Y

pubmed logopapersJun 1 2025
In computer-aided diagnosis systems, precise feature extraction from CT scans of colorectal cancer using deep learning is essential for effective prognosis. However, existing convolutional neural networks struggle to capture long-range dependencies and contextual information, resulting in incomplete CT feature extraction. To address this, the PEDRA-EFB0 architecture integrates patch embeddings and a dual residual attention mechanism for enhanced feature extraction and survival prediction in colorectal cancer CT scans. A patch embedding method processes CT scans into patches, creating positional features for global representation and guiding spatial attention computation. Additionally, a dual residual attention mechanism during the upsampling stage selectively combines local and global features, enhancing CT data utilization. Furthermore, this paper proposes a feature selection algorithm that combines autoencoders and entropy technology, encoding and compressing high-dimensional data to reduce redundant information and using entropy to assess the importance of features, thereby achieving precise feature selection. Experimental results indicate the PEDRA-EFB0 model outperforms traditional methods on colorectal cancer CT metrics, notably in C-index, BS, MCC, and AUC, enhancing survival prediction accuracy. Our code is freely available at https://github.com/smile0208z/PEDRA .

A continuous-action deep reinforcement learning-based agent for coronary artery centerline extraction in coronary CT angiography images.

Zhang Y, Luo G, Wang W, Cao S, Dong S, Yu D, Wang X, Wang K

pubmed logopapersJun 1 2025
The lumen centerline of the coronary artery allows vessel reconstruction used to detect stenoses and plaques. Discrete-action-based centerline extraction methods suffer from artifacts and plaques. This study aimed to develop a continuous-action-based method which performs more effectively in cases involving artifacts or plaques. A continuous-action deep reinforcement learning-based model was trained to predict the artery's direction and radius value. The model is based on an Actor-Critic architecture. The Actor learns a deterministic policy to output the actions made by an agent. These actions indicate the centerline's direction and radius value consecutively. The Critic learns a value function to evaluate the quality of the agent's actions. A novel DDR reward was introduced to measure the agent's action (both centerline extraction and radius estimate) at each step. The method achieved an average OV of 95.7%, OF of 93.6%, OT of 97.3%, and AI of 0.22 mm in 80 test data. In 53 cases with artifacts or plaques, it achieved an average OV of 95.0%, OF of 91.5%, OT of 96.7%, and AI of 0.23 mm. The 95% limits of agreement between the reference and estimated radius values were <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo></math> 0.46 mm and 0.43 mm in the 80 test data. Experiments demonstrate that the Actor-Critic architecture can achieve efficient centerline extraction and radius estimate. Compared with discrete-action-based methods, our method performs more effectively in cases involving artifacts or plaques. The extracted centerlines and radius values allow accurate coronary artery reconstruction that facilitates the detection of stenoses and plaques.

Automated contouring for breast cancer radiotherapy in the isocentric lateral decubitus position: a neural network-based solution for enhanced precision and efficiency.

Loap P, Monteil R, Kirova Y, Vu-Bezin J

pubmed logopapersJun 1 2025
Adjuvant radiotherapy is essential for reducing local recurrence and improving survival in breast cancer patients, but it carries a risk of ischemic cardiac toxicity, which increases with heart exposure. The isocentric lateral decubitus position, where the breast rests flat on a support, reduces heart exposure and leads to delivery of a more uniform dose. This position is particularly beneficial for patients with unique anatomies, such as those with pectus excavatum or larger breast sizes. While artificial intelligence (AI) algorithms for autocontouring have shown promise, they have not been tailored to this specific position. This study aimed to develop and evaluate a neural network-based autocontouring algorithm for patients treated in the isocentric lateral decubitus position. In this single-center study, 1189 breast cancer patients treated after breast-conserving surgery were included. Their simulation CT scans (1209 scans) were used to train and validate a neural network-based autocontouring algorithm (nnU-Net). Of these, 1087 scans were used for training, and 122 scans were reserved for validation. The algorithm's performance was assessed using the Dice similarity coefficient (DSC) to compare the automatically delineated volumes with manual contours. A clinical evaluation of the algorithm was performed on 30 additional patients, with contours rated by two expert radiation oncologists. The neural network-based algorithm achieved a segmentation time of approximately 4 min, compared to 20 min for manual segmentation. The DSC values for the validation cohort were 0.88 for the treated breast, 0.90 for the heart, 0.98 for the right lung, and 0.97 for the left lung. In the clinical evaluation, 90% of the automatically contoured breast volumes were rated as acceptable without corrections, while the remaining 10% required minor adjustments. All lung contours were accepted without corrections, and heart contours were rated as acceptable in 93.3% of cases, with minor corrections needed in 6.6% of cases. This neural network-based autocontouring algorithm offers a practical, time-saving solution for breast cancer radiotherapy planning in the isocentric lateral decubitus position. Its strong geometric performance, clinical acceptability, and significant time efficiency make it a valuable tool for modern radiotherapy practices, particularly in high-volume centers.

Impact of contrast enhancement phase on CT-based radiomics analysis for predicting post-surgical recurrence in renal cell carcinoma.

Khene ZE, Bhanvadia R, Tachibana I, Sharma P, Trevino I, Graber W, Bertail T, Fleury R, Acosta O, De Crevoisier R, Bensalah K, Lotan Y, Margulis V

pubmed logopapersJun 1 2025
To investigate the effect of CT enhancement phase on radiomics features for predicting post-surgical recurrence of clear cell renal cell carcinoma (ccRCC). This retrospective study included 144 patients who underwent radical or partial nephrectomy for ccRCC. Preoperative multiphase abdominal CT scans (non-contrast, corticomedullary, and nephrographic phases) were obtained for each patient. Automated segmentation of renal masses was performed using the nnU-Net framework. Radiomics signatures (RS) were developed for each phase using ensembles of machine learning-based models (Random Survival Forests [RSF], Survival Support Vector Machines [S-SVM], and Extreme Gradient Boosting [XGBoost]) with and without feature selection. Feature selection was performed using Affinity Propagation Clustering. The primary endpoint was disease-free survival, assessed by concordance index (C-index). The study included 144 patients. Radical and partial nephrectomies were performed in 81% and 19% of patients, respectively, with 81% of tumors classified as high grade. Disease recurrence occurred in 74 patients (51%). A total of 1,316 radiomics features were extracted per phase per patient. Without feature selection, C-index values for RSF, S-SVM, XGBoost, and Penalized Cox models ranged from 0.43 to 0.61 across phases. With Affinity Propagation feature selection, C-index values improved to 0.51-0.74, with the corticomedullary phase achieving the highest performance (C-index up to 0.74). The results of our study indicate that radiomics analysis of corticomedullary phase contrast-enhanced CT images may provide valuable predictive insight into recurrence risk for non-metastatic ccRCC following surgical resection. However, the lack of external validation is a limitation, and further studies are needed to confirm these findings in independent cohorts.

A Dual-Energy Computed Tomography Guided Intelligent Radiation Therapy Platform.

Wen N, Zhang Y, Zhang H, Zhang M, Zhou J, Liu Y, Liao C, Jia L, Zhang K, Chen J

pubmed logopapersJun 1 2025
The integration of advanced imaging and artificial intelligence technologies in radiation therapy has revolutionized cancer treatment by enhancing precision and adaptability. This study introduces a novel dual-energy computed tomography (DECT) guided intelligent radiation therapy (DEIT) platform designed to streamline and optimize the radiation therapy process. The DEIT system combines DECT, a newly designed dual-layer multileaf collimator, deep learning algorithms for auto-segmentation, and automated planning and quality assurance capabilities. The DEIT system integrates an 80-slice computed tomography (CT) scanner with an 87 cm bore size, a linear accelerator delivering 4 photon and 5 electron energies, and a flat panel imager optimized for megavoltage (MV) cone beam CT acquisition. A comprehensive evaluation of the system's accuracy was conducted using end-to-end tests. Virtual monoenergetic CT images and electron density images of the DECT were generated and compared on both phantom and patient. The system's auto-segmentation algorithms were tested on 5 cases for each of the 99 organs at risk, and the automated optimization and planning capabilities were evaluated on clinical cases. The DEIT system demonstrated systematic errors of less than 1 mm for target localization. DECT reconstruction showed electron density mapping deviations ranging from -0.052 to 0.001, with stable Hounsfield unit consistency across monoenergetic levels above 60 keV, except for high-Z materials at lower energies. Auto-segmentation achieved dice similarity coefficients above 0.9 for most organs with an inference time of less than 2 seconds. Dose-volume histogram comparisons showed improved dose conformity indices and reduced doses to critical structures in auto-plans compared to manual plans across various clinical cases. In addition, high gamma passing rates at 2%/2 mm in both 2-dimensional (above 97%) and 3-dimensional (above 99%) in vivo analyses further validate the accuracy and reliability of treatment plans. The DEIT platform represents a viable solution for radiation treatment. The DEIT system uses artificial intelligence-driven automation, real-time adjustments, and CT imaging to enhance the radiation therapy process, improving efficiency and flexibility.

Developing approaches to incorporate donor-lung computed tomography images into machine learning models to predict severe primary graft dysfunction after lung transplantation.

Ma W, Oh I, Luo Y, Kumar S, Gupta A, Lai AM, Puri V, Kreisel D, Gelman AE, Nava R, Witt CA, Byers DE, Halverson L, Vazquez-Guillamet R, Payne PRO, Sotiras A, Lu H, Niazi K, Gurcan MN, Hachem RR, Michelson AP

pubmed logopapersJun 1 2025
Primary graft dysfunction (PGD) is a common complication after lung transplantation associated with poor outcomes. Although risk factors have been identified, the complex interactions between clinical variables affecting PGD risk are not well understood, which can complicate decisions about donor-lung acceptance. Previously, we developed a machine learning model to predict grade 3 PGD using donor and recipient electronic health record data, but it lacked granular information from donor-lung computed tomography (CT) scans, which are routinely assessed during offer review. In this study, we used a gated approach to determine optimal methods for analyzing donor-lung CT scans among patients receiving first-time, bilateral lung transplants at a single center over 10 years. We assessed 4 computer vision approaches and fused the best with electronic health record data at 3 points in the machine learning process. A total of 160 patients had donor-lung CT scans for analysis. The best imaging-only approach employed a 3D ResNet model, yielding median (interquartile range) areas under the receiver operating characteristic and precision-recall curves of 0.63 (0.49-0.72) and 0.48 (0.35-0.6), respectively. Combining imaging with clinical data using late fusion provided the highest performance, with median areas under the receiver operating characteristic and precision-recall curves of 0.74 (0.59-0.85) and 0.61 (0.47-0.72), respectively.

Changes of Pericoronary Adipose Tissue in Stable Heart Transplantation Recipients and Comparison with Controls.

Yang J, Chen L, Yu J, Chen J, Shi J, Dong N, Yu F, Shi H

pubmed logopapersJun 1 2025
Pericoronary adipose tissue (PCAT) is a key cardiovascular risk biomarker, yet its temporal changes after heart transplantation (HT) and comparison with controls remain unclear. This study investigates the temporal changes of PCAT in stable HT recipients and compares it to controls. In this study, we analyzed 159 stable HT recipients alongside two control groups. Both control groups were matched to a subgroup of HT recipients who did not have coronary artery stenosis. Group 1 consisted of 60 individuals matched for age, sex, and body mass index (BMI), with no history of hypertension, diabetes, hyperlipidemia, or smoking. Group 2 included 56 individuals additionally matched for hypertension, diabetes, hyperlipidemia, and smoking history. PCAT volume and fat attenuation index (FAI) were measured using AI-based software. Temporal changes in PCAT were assessed at multiple time points in HT recipients, and PCAT in the subgroup of HT recipients without coronary stenosis was compared to controls. Stable HT recipients exhibited a progressive decrease in FAI and an increase in PCAT volume over time, particularly in the first five years post-HT. Similar trends were observed in the subgroup of HT recipients without coronary stenosis. Compared to controls, PCAT FAI was significantly higher in the HT subgroup during the first five years post-HT (P < 0.001). After five years, differences persisted but diminished, with no statistically significant differences observed in the PCAT of left anterior descending artery (LAD) (P > 0.05). A negative correlation was observed between FAI and PCAT volume post-HT (r = - 0.75 ∼ - 0.53). PCAT volume and FAI undergo temporal changes in stable HT recipients, especially during the first five years post-HT. Even in HT recipients without coronary stenosis, PCAT FAI differs from controls, indicating distinct changes in this cohort.
Page 114 of 1411410 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.