Sort by:
Page 111 of 2402393 results

Integrative radiomics of intra- and peri-tumoral features for enhanced risk prediction in thymic tumors: a multimodal analysis of tumor microenvironment contributions.

Zhu L, Li J, Wang X, He Y, Li S, He S, Deng B

pubmed logopapersJul 17 2025
This study aims to explore the role of intra- and peri-tumoral radiomics features in tumor risk prediction, with a particular focus on the impact of peri-tumoral characteristics on the tumor microenvironment. A total of 133 patients, including 128 with thymomas and 5 with thymic carcinomas, were ultimately enrolled in this study. Based on the high- and low-risk classification, the cohort was divided into a training set (n = 93) and a testing set (n = 40) for subsequent analysis.Based on imaging data from these 133 patients, multiple radiomics prediction models integrating intra-tumoral and peritumoral features were developed. The data were sourced from patients treated at the Affiliated Hospital of Guangdong Medical University between 2015 and 2023, with all imaging obtained through preoperative CT scans. Radiomics feature extraction involved three primary categories: first-order features, shape features, and high-order features. Initially, the tumor's region of interest (ROI) was manually delineated using ITK-SNAP software. A custom Python algorithm was then used to automatically expand the peri-tumoral area, extracting features within 1 mm, 2 mm, and 3 mm zones surrounding the tumor. Additionally, considering the multimodal nature of the imaging data, image fusion techniques were incorporated to further enhance the model's ability to capture the tumor microenvironment. To build the radiomics models, selected features were first standardized using z-scores. Initial feature selection was performed using a t-test (p < 0.05), followed by Spearman correlation analysis to remove redundancy by retaining only one feature from each pair with a correlation coefficient ≥ 0.90. Subsequently, hierarchical clustering and the LASSO algorithm were applied to identify the most predictive features. These selected features were then used to train machine learning models, which were optimized on the training dataset and assessed for predictive performance. To further evaluate the effectiveness of these models, various statistical methods were applied, including DeLong's test, NRI, and IDI, to compare predictive differences among models. Decision curve analysis (DCA) was also conducted to assess the clinical applicability of the models. The results indicate that the IntraPeri1mm model performed the best, achieving an AUC of 0.837, with sensitivity and specificity at 0.846 and 0.84, respectively, significantly outperforming other models. SHAP value analysis identified several key features, such as peri_log_sigma_2_0_mm 3D_firstorder RootMeanSquared and intra_wavelet_LLL_firstorder Skewness, which made substantial contributions to the model's predictive accuracy. NRI and IDI analyses further confirmed the model's superior clinical applicability, and the DCA curve demonstrated robust performance across different thresholds. DeLong's test highlighted the statistical significance of the IntraPeri1mm model, underscoring its potential utility in radiomics research. Overall, this study provides a new perspective on tumor risk assessment, highlighting the importance of peri-tumoral features in the analysis of the tumor microenvironment. It aims to offer valuable insights for the development of personalized treatment plans. Not applicable.

Physics consistent machine learning framework for inverse modeling with applications to ICF capsule implosions.

Serino DA, Bell E, Klasky M, Southworth BS, Nadiga B, Wilcox T, Korobkin O

pubmed logopapersJul 17 2025
In high energy density physics (HEDP) and inertial confinement fusion (ICF), predictive modeling is complicated by uncertainty in parameters that characterize various aspects of the modeled system, such as those characterizing material properties, equation of state (EOS), opacities, and initial conditions. Typically, however, these parameters are not directly observable. What is observed instead is a time sequence of radiographic projections using X-rays. In this work, we define a set of sparse hydrodynamic features derived from the outgoing shock profile and outer material edge, which can be obtained from radiographic measurements, to directly infer such parameters. Our machine learning (ML)-based methodology involves a pipeline of two architectures, a radiograph-to-features network (R2FNet) and a features-to-parameters network (F2PNet), that are trained independently and later combined to approximate a posterior distribution for the parameters from radiographs. We show that the machine learning architectures are able to accurately infer initial conditions and EOS parameters, and that the estimated parameters can be used in a hydrodynamics code to obtain density fields, shocks, and material interfaces that satisfy thermodynamic and hydrodynamic consistency. Finally, we demonstrate that features resulting from an unknown EOS model can be successfully mapped onto parameters of a chosen analytical EOS model, implying that network predictions are learning physics, with a degree of invariance to the underlying choice of EOS model. To the best of our knowledge, our framework is the first demonstration of recovering both thermodynamic and hydrodynamic consistent density fields from noisy radiographs.

Precision Diagnosis and Treatment Monitoring of Glioma via PET Radiomics.

Zhou C, Ji P, Gong B, Kou Y, Fan Z, Wang L

pubmed logopapersJul 17 2025
Glioma, the most common primary intracranial tumor, poses significant challenges to precision diagnosis and treatment due to its heterogeneity and invasiveness. With the introduction of the 2021 WHO classification standard based on molecular biomarkers, the role of imaging in non-invasive subtyping and therapeutic monitoring of gliomas has become increasingly crucial. While conventional MRI shows limitations in assessing metabolic status and differentiating tumor recurrence, positron emission tomography (PET) combined with radiomics and artificial intelligence technologies offers a novel paradigm for precise diagnosis and treatment monitoring through quantitative extraction of multimodal imaging features (e.g., intensity, texture, dynamic parameters). This review systematically summarizes the technical workflow of PET radiomics (including tracer selection, image segmentation, feature extraction, and model construction) and its applications in predicting molecular subtypes (such as IDH mutation and MGMT methylation), distinguishing recurrence from treatment-related changes, and prognostic stratification. Studies demonstrate that amino acid tracers (e.g., <sup>18</sup>F-FET, <sup>11</sup>C-MET) combined with multimodal radiomics models significantly outperform traditional parametric analysis in diagnostic efficacy. Nevertheless, current research still faces challenges including data heterogeneity, insufficient model interpretability, and lack of clinical validation. Future advancements require multicenter standardized protocols, open-source algorithm frameworks, and multi-omics integration to facilitate the transformative clinical translation of PET radiomics from research to practice.

Opportunistic computed tomography (CT) assessment of osteoporosis in patients undergoing transcatheter aortic valve replacement (TAVR).

Paukovitsch M, Fechner T, Felbel D, Moerike J, Rottbauer W, Klömpken S, Brunner H, Kloth C, Beer M, Sekuboyina A, Buckert D, Kirschke JS, Sollmann N

pubmed logopapersJul 17 2025
CT-based opportunistic screening using artificial intelligence finds a high prevalence (43%) of osteoporosis in CT scans obtained for planning of transcatheter aortic valve replacement. Thus, opportunistic screening may be a cost-effective way to assess osteoporosis in high-risk populations. Osteoporosis is an underdiagnosed condition associated with fractures and frailty, but may be detected in routine computed tomography (CT) scans. Volumetric bone mineral density (vBMD) was measured in clinical routine thoraco-abdominal CT scans of 207 patients for planning of transcatheter aortic valve replacement (TAVR) using an artificial intelligence (AI)-based algorithm. 43% of patients had osteoporosis (vBMD < 80 mg/cm<sup>3</sup> L1-L3) and were elderly (83.0 {interquartile range [IQR]: 78.0-85.5} vs. 79.0 {IQR: 71.8-84.0} years, p < 0.001), more often female (55.1 vs. 28.8%, p < 0.001), and had a higher Society of Thoracic Surgeon's score for mortality (3.0 {IQR:1.8-4.6} vs. 2.1 {IQR: 1.4-3.2}%, p < 0.001). In addition to lumbar vBMD (58.2 ± 14.7 vs. 106 ± 21.4 mg/cm<sup>3</sup>, p < 0.001), thoracic vBMD (79.5 ± 17.9 vs. 127.4 ± 26.0 mg/cm<sup>3</sup>, p < 0.001) was also significantly reduced in these patients and showed high diagnostic accuracy for osteoporosis assessment (area under curve: 0.96, p < 0.001). Osteoporotic patients were significantly more often at risk for falls (40.4 vs. 22.9%, p = 0.007) and required help in activities of daily life (ADL) more frequently (48.3 vs. 33.1%, p = 0.026), while direct-to-home discharges were fewer (88.8 vs. 96.6%, p = 0.026). In-hospital bleeding complications (3.4 vs. 5.1%), stroke (1.1 vs. 2.5%), and death (1.1 vs. 0.8%) were equally low, while in-hospital device success was equally high (94.4 vs. 94.9%, p > 0.05 for all comparisons). However, one-year probability of survival was significantly lower (84.0 vs. 98.2%, log-rank p < 0.01). Applying an AI-based algorithm to TAVR planning CT scans can reveal a high rate of 43% patients having osteoporosis. Osteoporosis may represent a marker related to frailty and worsened outcome in TAVR patients.

Hybrid Ensemble Approaches: Optimal Deep Feature Fusion and Hyperparameter-Tuned Classifier Ensembling for Enhanced Brain Tumor Classification

Zahid Ullah, Dragan Pamucar, Jihie Kim

arxiv logopreprintJul 16 2025
Magnetic Resonance Imaging (MRI) is widely recognized as the most reliable tool for detecting tumors due to its capability to produce detailed images that reveal their presence. However, the accuracy of diagnosis can be compromised when human specialists evaluate these images. Factors such as fatigue, limited expertise, and insufficient image detail can lead to errors. For example, small tumors might go unnoticed, or overlap with healthy brain regions could result in misidentification. To address these challenges and enhance diagnostic precision, this study proposes a novel double ensembling framework, consisting of ensembled pre-trained deep learning (DL) models for feature extraction and ensembled fine-tuned hyperparameter machine learning (ML) models to efficiently classify brain tumors. Specifically, our method includes extensive preprocessing and augmentation, transfer learning concepts by utilizing various pre-trained deep convolutional neural networks and vision transformer networks to extract deep features from brain MRI, and fine-tune hyperparameters of ML classifiers. Our experiments utilized three different publicly available Kaggle MRI brain tumor datasets to evaluate the pre-trained DL feature extractor models, ML classifiers, and the effectiveness of an ensemble of deep features along with an ensemble of ML classifiers for brain tumor classification. Our results indicate that the proposed feature fusion and classifier fusion improve upon the state of the art, with hyperparameter fine-tuning providing a significant enhancement over the ensemble method. Additionally, we present an ablation study to illustrate how each component contributes to accurate brain tumor classification.

Automated CAD-RADS scoring from multiplanar CCTA images using radiomics-driven machine learning.

Corti A, Ronchetti F, Lo Iacono F, Chiesa M, Colombo G, Annoni A, Baggiano A, Carerj ML, Del Torto A, Fazzari F, Formenti A, Junod D, Mancini ME, Maragna R, Marchetti F, Sbordone FP, Tassetti L, Volpe A, Mushtaq S, Corino VDA, Pontone G

pubmed logopapersJul 16 2025
Coronary Artery Disease-Reporting and Data System (CAD-RADS), a standardized reporting system of stenosis severity from coronary computed tomography angiography (CCTA), is performed manually by expert radiologists, being time-consuming and prone to interobserver variability. While deep learning methods automating CAD-RADS scoring have been proposed, radiomics-based machine-learning approaches are lacking, despite their improved interpretability. This study aims to introduce a novel radiomics-based machine-learning approach for automating CAD-RADS scoring from CCTA images with multiplanar reconstruction. This retrospective monocentric study included 251 patients (male 70 %; mean age 60.5 ± 12.7) who underwent CCTA in 2016-2018 for clinical evaluation of CAD. Images were automatically segmented, and radiomic features were extracted. Clinical characteristics were collected. The image dataset was partitioned into training and test sets (90 %-10 %). The training phase encompassed feature scaling and selection, data balancing and model training within a 5-fold cross-validation. A cascade pipeline was implemented for both 6-class CAD-RADS scoring and 4-class therapy-oriented classification (0-1, 2, 3-4, 5), through consecutive sub-tasks. For each classification task the cascade pipeline was applied to develop clinical, radiomic, and combined models. The radiomic, combined and clinical models yielded AUC = 0.88 [0.86-0.88], AUC = 0.90 [0.88-0.90], and AUC = 0.66 [0.66-0.67] for the CAD-RADS scoring, and AUC = 0.93 [0.91-0.93], AUC = 0.97 [0.96-0.97], and AUC = 79 [0.78-0.79] for the therapy-oriented classification. The radiomic and combined models significantly outperformed (DeLong p-value < 0.05) the clinical one in class 1 and 2 (CAD-RADS cascade) and class 2 (therapy-oriented cascade). This study represents the first CAD-RADS classification radiomic model, guaranteeing higher explainability and providing a promising support system in coronary artery stenosis assessment.

Automated microvascular invasion prediction of hepatocellular carcinoma via deep relation reasoning from dynamic contrast-enhanced ultrasound.

Wang Y, Xie W, Li C, Xu Q, Du Z, Zhong Z, Tang L

pubmed logopapersJul 16 2025
Hepatocellular carcinoma (HCC) is a major global health concern, with microvascular invasion (MVI) being a critical prognostic factor linked to early recurrence and poor survival. Preoperative MVI prediction remains challenging, but recent advancements in dynamic contrast-enhanced ultrasound (CEUS) imaging combined with artificial intelligence show promise in improving prediction accuracy. CEUS offers real-time visualization of tumor vascularity, providing unique insights into MVI characteristics. This study proposes a novel deep relation reasoning approach to address the challenges of modeling intricate temporal relationships and extracting complex spatial features from CEUS video frames. Our method integrates CEUS video sequences and introduces a visual graph reasoning framework that correlates intratumoral and peritumoral features across various imaging phases. The system employs dual-path feature extraction, MVI pattern topology construction, Graph Convolutional Network learning, and an MVI pattern discovery module to capture complex features while providing interpretable results. Experimental findings demonstrate that our approach surpasses existing state-of-the-art models in accuracy, sensitivity, and specificity for MVI prediction. The system achieved superiors accuracy, sensitivity, specificity and AUC. These advancements promise to enhance HCC diagnosis and management, potentially revolutionizing patient care. The method's robust performance, even with limited data, underscores its potential for practical clinical application in improving the efficacy and efficiency of HCC patient diagnosis and treatment planning.

Multimodal neuroimaging unveils basal forebrain-limbic system circuit dysregulation in cognitive impairment with depression: a pathway to early diagnosis and intervention.

Xu X, Anayiti X, Chen P, Xie Z, Tao M, Xiang Y, Tan M, Liu Y, Yue L, Xiao S, Wang P

pubmed logopapersJul 16 2025
Alzheimer's disease (AD) frequently co-occurs with depressive symptoms, exacerbating both cognitive decline and clinical complexity, yet the neural substrates linking this co-occurrence remain poorly understood. We aimed to investigate the role of basal forebrain-limbic system circuit dysregulation in the interaction between cognitive impairment and depressive symptoms, identifying potential biomarkers for early diagnosis and intervention. This cross-sectional study included participants stratified into normal controls (NC), cognitive impairment without depression (CI-nD), and cognitive impairment with depression (CI-D). Multimodal MRI (structural, diffusion, functional, perfusion, iron-sensitive imaging) and plasma biomarkers were analyzed. Machine learning models classified subgroups using neuroimaging features. CI-D exhibited distinct basal forebrain-limbic circuit alterations versus CI-nD and NC: (1) Elevated free-water fraction (FW) in basal forebrain subregions (Ch123/Ch4, p < 0.04), indicating early neuroinflammation; (2) Increased iron deposition in the anterior cingulate cortex and entorhinal cortex (p < 0.05); (3) Hyperperfusion and functional hyperactivity in Ch123 and amygdala; (4) Plasma neurofilamentlightchain exhibited correlated with hippocampal inflammation in CI-nD (p = 0.03) but linked to basal forebrain dysfunction in CI-D (p < 0.05). Multimodal support vector machine achieved 85 % accuracy (AUC=0.96) in distinguishing CI-D from CI-nD, with Ch123 and Ch4 as key discriminators. Pathway analysis in the CI-D group further revealed that FW-related neuroinflammation in the basal forebrain (Ch123/Ch4) indirectly contributed to cognitive impairment via structural atrophy. We identified a neuroinflammatory-cholinergic pathway in the basal forebrain as an early mechanism driving depression-associated cognitive decline. Multimodal imaging revealed distinct spatiotemporal patterns of circuit dysregulation, suggesting neuroinflammation and iron deposition precede structural degeneration. These findings position the basal forebrain-limbic system circuit as a therapeutic target and provide actionable biomarkers for early intervention in AD with depressive symptoms.

Multi-DECT image-based radiomics with interpretable machine learning for preoperative prediction of tumor budding grade and prognosis in colorectal cancer: a dual-center study.

Lin G, Chen W, Chen Y, Cao J, Mao W, Xia S, Chen M, Xu M, Lu C, Ji J

pubmed logopapersJul 16 2025
This study evaluates the predictive ability of multiparametric dual-energy computed tomography (multi-DECT) radiomics for tumor budding (TB) grade and prognosis in patients with colorectal cancer (CRC). This study comprised 510 CRC patients at two institutions. The radiomics features of multi-DECT images (including polyenergetic, virtual monoenergetic, iodine concentration [IC], and effective atomic number images) were screened to build radiomics models utilizing nine machine learning (ML) algorithms. An ML-based fusion model comprising clinical-radiological variables and radiomics features was developed. The assessment of model performance was conducted through the area under the receiver operating characteristic curve (AUC), while the model's interpretability was assessed by shapley additive explanation (SHAP). The prognostic significance of the fusion model was determined via survival analysis. The CT-reported lymph node status and normalized IC were used to develop a clinical-radiological model. Among the nine examined ML algorithms, the extreme gradient boosting (XGB) algorithm performed best. The XGB-based fusion model containing multi-DECT radiomics features outperformed the clinical-radiological model in predicting TB grade, demonstrating superior AUCs of 0.969 in the training cohort, 0.934 in the internal validation cohort, and 0.897 in the external validation cohort. The SHAP analysis identified variables influencing model predictions. Patients with a model-predicted high TB grade had worse recurrence-free survival (RFS) in both the training (P < 0.001) and internal validation (P = 0.016) cohorts. The XGB-based fusion model using multi-DECT radiomics could serve as a non-invasive tool to predict TB grade and RFS in patients with CRC preoperatively.

CT-ScanGaze: A Dataset and Baselines for 3D Volumetric Scanpath Modeling

Trong-Thang Pham, Akash Awasthi, Saba Khan, Esteban Duran Marti, Tien-Phat Nguyen, Khoa Vo, Minh Tran, Ngoc Son Nguyen, Cuong Tran Van, Yuki Ikebe, Anh Totti Nguyen, Anh Nguyen, Zhigang Deng, Carol C. Wu, Hien Van Nguyen, Ngan Le

arxiv logopreprintJul 16 2025
Understanding radiologists' eye movement during Computed Tomography (CT) reading is crucial for developing effective interpretable computer-aided diagnosis systems. However, CT research in this area has been limited by the lack of publicly available eye-tracking datasets and the three-dimensional complexity of CT volumes. To address these challenges, we present the first publicly available eye gaze dataset on CT, called CT-ScanGaze. Then, we introduce CT-Searcher, a novel 3D scanpath predictor designed specifically to process CT volumes and generate radiologist-like 3D fixation sequences, overcoming the limitations of current scanpath predictors that only handle 2D inputs. Since deep learning models benefit from a pretraining step, we develop a pipeline that converts existing 2D gaze datasets into 3D gaze data to pretrain CT-Searcher. Through both qualitative and quantitative evaluations on CT-ScanGaze, we demonstrate the effectiveness of our approach and provide a comprehensive assessment framework for 3D scanpath prediction in medical imaging.
Page 111 of 2402393 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.