Sort by:
Page 110 of 1401394 results

Leveraging Vision Transformers in Multimodal Models for Retinal OCT Analysis.

Feretzakis G, Karakosta C, Gkoulalas-Divanis A, Bisoukis A, Boufeas IZ, Bazakidou E, Sakagianni A, Kalles D, Verykios VS

pubmed logopapersMay 15 2025
Optical Coherence Tomography (OCT) has become an indispensable imaging modality in ophthalmology, providing high-resolution cross-sectional images of the retina. Accurate classification of OCT images is crucial for diagnosing retinal diseases such as Age-related Macular Degeneration (AMD) and Diabetic Macular Edema (DME). This study explores the efficacy of various deep learning models, including convolutional neural networks (CNNs) and Vision Transformers (ViTs), in classifying OCT images. We also investigate the impact of integrating metadata (patient age, sex, eye laterality, and year) into the classification process, even when a significant portion of metadata is missing. Our results demonstrate that multimodal models leveraging both image and metadata inputs, such as the Multimodal ResNet18, can achieve competitive performance compared to image-only models, such as DenseNet121. Notably, DenseNet121 and Multimodal ResNet18 achieved the highest accuracy of 95.16%, with DenseNet121 showing a slightly higher F1-score of 0.9313. The multimodal ViT-based model also demonstrated promising results, achieving an accuracy of 93.22%, indicating the potential of Vision Transformers (ViTs) in medical image analysis, especially for handling complex multimodal data.

Exploring the Potential of Retrieval Augmented Generation for Question Answering in Radiology: Initial Findings and Future Directions.

Mou Y, Siepmann RM, Truhnn D, Sowe S, Decker S

pubmed logopapersMay 15 2025
This study explores the application of Retrieval-Augmented Generation (RAG) for question answering in radiology, an area where intelligent systems can significantly impact clinical decision-making. A preliminary experiment tested a naive RAG setup on nice radiology-specific questions with a textbook as the reference source, showing moderate improvements over baseline methods. The paper discusses lessons learned and potential enhancements for RAG in handling radiology knowledge, suggesting pathways for future research in integrating intelligent health systems in medical practice.

External Validation of a CT-Based Radiogenomics Model for the Detection of EGFR Mutation in NSCLC and the Impact of Prevalence in Model Building by Using Synthetic Minority Over Sampling (SMOTE): Lessons Learned.

Kohan AA, Mirshahvalad SA, Hinzpeter R, Kulanthaivelu R, Avery L, Ortega C, Metser U, Hope A, Veit-Haibach P

pubmed logopapersMay 15 2025
Radiogenomics holds promise in identifying molecular alterations in nonsmall cell lung cancer (NSCLC) using imaging features. Previously, we developed a radiogenomics model to predict epidermal growth factor receptor (EGFR) mutations based on contrast-enhanced computed tomography (CECT) in NSCLC patients. The current study aimed to externally validate this model using a publicly available National Institutes of Health (NIH)-based NSCLC dataset and assess the effect of EGFR mutation prevalence on model performance through synthetic minority oversampling technique (SMOTE). The original radiogenomics model was validated on an independent NIH cohort (n=140). For assessing the influence of disease prevalence, six SMOTE-augmented datasets were created, simulating EGFR mutation prevalence from 25% to 50%. Seven models were developed (one from original data, six SMOTE-augmented), each undergoing rigorous cross-validation, feature selection, and logistic regression modeling. Models were tested against the NIH cohort. Performance was compared using area under the receiver operating characteristic curve (Area Under the Curve [AUC]), and differences between radiomic-only, clinical-only, and combined models were statistically assessed. External validation revealed poor diagnostic performance for both our model and a previously published EGFR radiomics model (AUC ∼0.5). The clinical model alone achieved higher diagnostic accuracy (AUC 0.74). SMOTE-augmented models showed increased sensitivity but did not improve overall AUC compared to the clinical-only model. Changing EGFR mutation prevalence had minimal impact on AUC, challenging previous assumptions about the influence of sample imbalance on model performance. External validation failed to reproduce prior radiogenomics model performance, while clinical variables alone retained strong predictive value. SMOTE-based oversampling did not improve diagnostic accuracy, suggesting that, in EGFR prediction, radiomics may offer limited value beyond clinical data. Emphasis on robust external validation and data-sharing is essential for future clinical implementation of radiogenomic models.

Automatic head and neck tumor segmentation through deep learning and Bayesian optimization on three-dimensional medical images.

Douglas Z, Rahman A, Duggar WN, Wang H

pubmed logopapersMay 15 2025
Medical imaging constitutes critical information in the diagnostic and prognostic evaluation of patients, as it serves to uncover a broad spectrum of pathologies and deviances. Clinical practitioners who carry out medical image screening are primarily reliant on their knowledge and experience for disease diagnosis. Convolutional Neural Networks (CNNs) hold the potential to serve as a formidable decision-support tool in the realm of medical image analysis due to their high capacity to extract hierarchical features and effectuate direct classification and segmentation from image data. However, CNNs contain a myriad of hyperparameters and optimizing these hyperparameters poses a major obstacle to the effective implementation of CNNs. In this work, a two-phase Bayesian Optimization-derived Scheduling (BOS) approach is proposed for hyperparameter optimization for the head and cancerous tissue segmentation tasks. We proposed this two-phase BOS approach to incorporate both rapid convergences in the first training phase and slower (but without overfitting) improvements in the last training phase. Furthermore, we found that batch size and learning rate have a significant impact on the training process, but optimizing them separately can lead to sub-optimal hyperparameter combinations. Therefore, batch size and learning rate have been coupled as the batch size to learning rate (B2L) ratio and utilized in the optimization process to optimize both simultaneously. The optimized hyperparameters have been tested for a three-dimensional V-Net model with computed tomography (CT) and positron emission tomography (PET) scans to segment and classify cancerous and noncancerous tissues. The results of 10-fold cross-validation indicate that the optimal batch size to learning rate (B2L) ratio for each phase of the training method can improve the overall medical image segmentation performance.

Machine Learning-Based Multimodal Radiomics and Transcriptomics Models for Predicting Radiotherapy Sensitivity and Prognosis in Esophageal Cancer.

Ye C, Zhang H, Chi Z, Xu Z, Cai Y, Xu Y, Tong X

pubmed logopapersMay 15 2025
Radiotherapy plays a critical role in treating esophageal cancer, but individual responses vary significantly, impacting patient outcomes. This study integrates machine learning-driven multimodal radiomics and transcriptomics to develop predictive models for radiotherapy sensitivity and prognosis in esophageal cancer. We applied the SEResNet101 deep learning model to imaging and transcriptomic data from the UCSC Xena and TCGA databases, identifying prognosis-associated genes such as STUB1, PEX12, and HEXIM2. Using Lasso regression and Cox analysis, we constructed a prognostic risk model that accurately stratifies patients based on survival probability. Notably, STUB1, an E3 ubiquitin ligase, enhances radiotherapy sensitivity by promoting the ubiquitination and degradation of SRC, a key oncogenic protein. In vitro and in vivo experiments confirmed that STUB1 overexpression or SRC silencing significantly improves radiotherapy response in esophageal cancer models. These findings highlight the predictive power of multimodal data integration for individualized radiotherapy planning and underscore STUB1 as a promising therapeutic target for enhancing radiotherapy efficacy in esophageal cancer.

Machine learning prediction prior to onset of mild cognitive impairment using T1-weighted magnetic resonance imaging radiomic of the hippocampus.

Zhan S, Wang J, Dong J, Ji X, Huang L, Zhang Q, Xu D, Peng L, Wang X, Zhang Y, Liang S, Chen L

pubmed logopapersMay 15 2025
Early identification of individuals who progress from normal cognition (NC) to mild cognitive impairment (MCI) may help prevent cognitive decline. We aimed to build predictive models using radiomic features of the bilateral hippocampus in combination with scores from neuropsychological assessments. We utilized the Alzheimer's Disease Neuroimaging Initiative (ADNI) database to study 175 NC individuals, identifying 50 who progressed to MCI within seven years. Employing the Least Absolute Shrinkage and Selection Operator (LASSO) on T1-weighted images, we extracted and refined hippocampal features. Classification models, including Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF), and light gradient boosters (LightGBM), were built based on significant neuropsychological scores. Model validation was conducted using 5-fold cross-validation, and hyperparameters were optimized with Scikit-learn, using an 80:20 data split for training and testing. We found that the LightGBM model achieved an area under the receiver operating characteristic (ROC) curve (AUC) value of 0.89 and an accuracy of 0.79 in the training set, and an AUC value of 0.80 and an accuracy of 0.74 in the test set. The study identified that T1-weighted magnetic resonance imaging radiomic of the hippocampus would be used to predict the progression to MCI at the normal cognitive stage, which might provide a new insight into clinical research.

Advancing Multiple Instance Learning with Continual Learning for Whole Slide Imaging

Xianrui Li, Yufei Cui, Jun Li, Antoni B. Chan

arxiv logopreprintMay 15 2025
Advances in medical imaging and deep learning have propelled progress in whole slide image (WSI) analysis, with multiple instance learning (MIL) showing promise for efficient and accurate diagnostics. However, conventional MIL models often lack adaptability to evolving datasets, as they rely on static training that cannot incorporate new information without extensive retraining. Applying continual learning (CL) to MIL models is a possible solution, but often sees limited improvements. In this paper, we analyze CL in the context of attention MIL models and find that the model forgetting is mainly concentrated in the attention layers of the MIL model. Using the results of this analysis we propose two components for improving CL on MIL: Attention Knowledge Distillation (AKD) and the Pseudo-Bag Memory Pool (PMP). AKD mitigates catastrophic forgetting by focusing on retaining attention layer knowledge between learning sessions, while PMP reduces the memory footprint by selectively storing only the most informative patches, or ``pseudo-bags'' from WSIs. Experimental evaluations demonstrate that our method significantly improves both accuracy and memory efficiency on diverse WSI datasets, outperforming current state-of-the-art CL methods. This work provides a foundation for CL in large-scale, weakly annotated clinical datasets, paving the way for more adaptable and resilient diagnostic models.

Predicting Risk of Pulmonary Fibrosis Formation in PASC Patients

Wanying Dou, Gorkem Durak, Koushik Biswas, Ziliang Hong, Andrea Mia Bejar, Elif Keles, Kaan Akin, Sukru Mehmet Erturk, Alpay Medetalibeyoglu, Marc Sala, Alexander Misharin, Hatice Savas, Mary Salvatore, Sachin Jambawalikar, Drew Torigian, Jayaram K. Udupa, Ulas Bagci

arxiv logopreprintMay 15 2025
While the acute phase of the COVID-19 pandemic has subsided, its long-term effects persist through Post-Acute Sequelae of COVID-19 (PASC), commonly known as Long COVID. There remains substantial uncertainty regarding both its duration and optimal management strategies. PASC manifests as a diverse array of persistent or newly emerging symptoms--ranging from fatigue, dyspnea, and neurologic impairments (e.g., brain fog), to cardiovascular, pulmonary, and musculoskeletal abnormalities--that extend beyond the acute infection phase. This heterogeneous presentation poses substantial challenges for clinical assessment, diagnosis, and treatment planning. In this paper, we focus on imaging findings that may suggest fibrotic damage in the lungs, a critical manifestation characterized by scarring of lung tissue, which can potentially affect long-term respiratory function in patients with PASC. This study introduces a novel multi-center chest CT analysis framework that combines deep learning and radiomics for fibrosis prediction. Our approach leverages convolutional neural networks (CNNs) and interpretable feature extraction, achieving 82.2% accuracy and 85.5% AUC in classification tasks. We demonstrate the effectiveness of Grad-CAM visualization and radiomics-based feature analysis in providing clinically relevant insights for PASC-related lung fibrosis prediction. Our findings highlight the potential of deep learning-driven computational methods for early detection and risk assessment of PASC-related lung fibrosis--presented for the first time in the literature.

Privacy-Protecting Image Classification Within the Web Browser Using Deep Learning Models from Zenodo.

Auer F, Mayer S, Kramer F

pubmed logopapersMay 15 2025
Integrating deep learning into clinical workflows for medical image analysis holds promise for improving diagnostic accuracy. However, strict data privacy regulations and the sensitivity of clinical IT infrastructure limit the deployment of cloud-based solutions. This paper introduces WebIPred, a web-based application that loads deep learning models directly within the client's web browser, protecting patient privacy while maintaining compatibility with clinical IT environments. WebIPred supports the application of pre-trained models published on Zenodo and other repositories, allowing clinicians to apply these models to real patient data without the need for extensive technical knowledge. This paper outlines WebIPred's model integration system, prediction workflow, and privacy features. Our results show that WebIPred offers a privacy-protecting and flexible application for image classification, only relying on client-side processing. WebIPred combines its strong commitment to data privacy and security with a user-friendly interface that makes it easy for clinicians to integrate AI into their workflows.
Page 110 of 1401394 results
Show
per page
Get Started

Upload your X-ray image and get interpretation.

Upload now →

Disclaimer: X-ray Interpreter's AI-generated results are for informational purposes only and not a substitute for professional medical advice. Always consult a healthcare professional for medical diagnosis and treatment.