Sort by:
Page 11 of 14137 results

Robust multi-coil MRI reconstruction via self-supervised denoising.

Aali A, Arvinte M, Kumar S, Arefeen YI, Tamir JI

pubmed logopapersJun 2 2025
To examine the effect of incorporating self-supervised denoising as a pre-processing step for training deep learning (DL) based reconstruction methods on data corrupted by Gaussian noise. K-space data employed for training are typically multi-coil and inherently noisy. Although DL-based reconstruction methods trained on fully sampled data can enable high reconstruction quality, obtaining large, noise-free datasets is impractical. We leverage Generalized Stein's Unbiased Risk Estimate (GSURE) for denoising. We evaluate two DL-based reconstruction methods: Diffusion Probabilistic Models (DPMs) and Model-Based Deep Learning (MoDL). We evaluate the impact of denoising on the performance of these DL-based methods in solving accelerated multi-coil magnetic resonance imaging (MRI) reconstruction. The experiments were carried out on T2-weighted brain and fat-suppressed proton-density knee scans. We observed that self-supervised denoising enhances the quality and efficiency of MRI reconstructions across various scenarios. Specifically, employing denoised images rather than noisy counterparts when training DL networks results in lower normalized root mean squared error (NRMSE), higher structural similarity index measure (SSIM) and peak signal-to-noise ratio (PSNR) across different SNR levels, including 32, 22, and 12 dB for T2-weighted brain data, and 24, 14, and 4 dB for fat-suppressed knee data. We showed that denoising is an essential pre-processing technique capable of improving the efficacy of DL-based MRI reconstruction methods under diverse conditions. By refining the quality of input data, denoising enables training more effective DL networks, potentially bypassing the need for noise-free reference MRI scans.

Deep Learning-Based Three-Dimensional Analysis Reveals Distinct Patterns of Condylar Remodelling After Orthognathic Surgery in Skeletal Class III Patients.

Barone S, Cevidanes L, Bianchi J, Goncalves JR, Giudice A

pubmed logopapersJun 1 2025
This retrospective study aimed to evaluate morphometric changes in mandibular condyles of patients with skeletal Class III malocclusion following two-jaw orthognathic surgery planned using virtual surgical planning (VSP) and analysed with automated three-dimensional (3D) image analysis based on deep-learning techniques. Pre-operative (T1) and 12-18 months post-operative (T2) Cone-Beam Computed Tomography (CBCT) scans of 17 patients (mean age: 24.8 ± 3.5 years) were analysed using 3DSlicer software. Deep-learning algorithms automated CBCT orientation, registration, bone segmentation, and landmark identification. By utilising voxel-based superimposition of pre- and post-operative CBCT scans and shape correspondence, the overall changes in condylar morphology were assessed, with a focus on bone resorption and apposition at specific regions (superior, lateral and medial poles). The correlation between these modifications and the extent of actual condylar movements post-surgery was investigated. Statistical analysis was conducted with a significance level of α = 0.05. Overall condylar remodelling was minimal, with mean changes of < 1 mm. Small but statistically significant bone resorption occurred at the condylar superior articular surface, while bone apposition was primarily observed at the lateral pole. The bone apposition at the lateral pole and resorption at the superior articular surface were significantly correlated with medial condylar displacement (p < 0.05). The automated 3D analysis revealed distinct patterns of condylar remodelling following orthognathic surgery in skeletal Class III patients, with minimal overall changes but significant regional variations. The correlation between condylar displacements and remodelling patterns highlights the need for precise pre-operative planning to optimise condylar positioning, potentially minimising harmful remodelling and enhancing stability.

Radiomics across modalities: a comprehensive review of neurodegenerative diseases.

Inglese M, Conti A, Toschi N

pubmed logopapersJun 1 2025
Radiomics allows extraction from medical images of quantitative features that are able to reveal tissue patterns that are generally invisible to human observers. Despite the challenges in visually interpreting radiomic features and the computational resources required to generate them, they hold significant value in downstream automated processing. For instance, in statistical or machine learning frameworks, radiomic features enhance sensitivity and specificity, making them indispensable for tasks such as diagnosis, prognosis, prediction, monitoring, image-guided interventions, and evaluating therapeutic responses. This review explores the application of radiomics in neurodegenerative diseases, with a focus on Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. While radiomics literature often focuses on magnetic resonance imaging (MRI) and computed tomography (CT), this review also covers its broader application in nuclear medicine, with use cases of positron emission tomography (PET) and single-photon emission computed tomography (SPECT) radiomics. Additionally, we review integrated radiomics, where features from multiple imaging modalities are fused to improve model performance. This review also highlights the growing integration of radiomics with artificial intelligence and the need for feature standardisation and reproducibility to facilitate its translation into clinical practice.

Significant reduction in manual annotation costs in ultrasound medical image database construction through step by step artificial intelligence pre-annotation.

Zheng F, XingMing L, JuYing X, MengYing T, BaoJian Y, Yan S, KeWei Y, ZhiKai L, Cheng H, KeLan Q, XiHao C, WenFei D, Ping H, RunYu W, Ying Y, XiaoHui B

pubmed logopapersJun 1 2025
This study investigates the feasibility of reducing manual image annotation costs in medical image database construction by utilizing a step by step approach where the Artificial Intelligence model (AI model) trained on a previous batch of data automatically pre-annotates the next batch of image data, taking ultrasound image of thyroid nodule annotation as an example. The study used YOLOv8 as the AI model. During the AI model training, in addition to conventional image augmentation techniques, augmentation methods specifically tailored for ultrasound images were employed to balance the quantity differences between thyroid nodule classes and enhance model training effectiveness. The study found that training the model with augmented data significantly outperformed training with raw images data. When the number of original images number was only 1,360, with 7 thyroid nodule classifications, pre-annotation using the AI model trained on augmented data could save at least 30% of the manual annotation workload for junior physicians. When the scale of original images number reached 6,800, the classification accuracy of the AI model trained on augmented data was very close with that of junior physicians, eliminating the need for manual preliminary annotation.

Uncertainty Estimation for Dual View X-ray Mammographic Image Registration Using Deep Ensembles.

Walton WC, Kim SJ

pubmed logopapersJun 1 2025
Techniques are developed for generating uncertainty estimates for convolutional neural network (CNN)-based methods for registering the locations of lesions between the craniocaudal (CC) and mediolateral oblique (MLO) mammographic X-ray image views. Multi-view lesion correspondence is an important task that clinicians perform for characterizing lesions during routine mammographic exams. Automated registration tools can aid in this task, yet if the tools also provide confidence estimates, they can be of greater value to clinicians, especially in cases involving dense tissue where lesions may be difficult to see. A set of deep ensemble-based techniques, which leverage a negative log-likelihood (NLL)-based cost function, are implemented for estimating uncertainties. The ensemble architectures involve significant modifications to an existing CNN dual-view lesion registration algorithm. Three architectural designs are evaluated, and different ensemble sizes are compared using various performance metrics. The techniques are tested on synthetic X-ray data, real 2D X-ray data, and slices from real 3D X-ray data. The ensembles generate covariance-based uncertainty ellipses that are correlated with registration accuracy, such that the ellipse sizes can give a clinician an indication of confidence in the mapping between the CC and MLO views. The results also show that the ellipse sizes can aid in improving computer-aided detection (CAD) results by matching CC/MLO lesion detects and reducing false alarms from both views, adding to clinical utility. The uncertainty estimation techniques show promise as a means for aiding clinicians in confidently establishing multi-view lesion correspondence, thereby improving diagnostic capability.

Cross-site Validation of AI Segmentation and Harmonization in Breast MRI.

Huang Y, Leotta NJ, Hirsch L, Gullo RL, Hughes M, Reiner J, Saphier NB, Myers KS, Panigrahi B, Ambinder E, Di Carlo P, Grimm LJ, Lowell D, Yoon S, Ghate SV, Parra LC, Sutton EJ

pubmed logopapersJun 1 2025
This work aims to perform a cross-site validation of automated segmentation for breast cancers in MRI and to compare the performance to radiologists. A three-dimensional (3D) U-Net was trained to segment cancers in dynamic contrast-enhanced axial MRIs using a large dataset from Site 1 (n = 15,266; 449 malignant and 14,817 benign). Performance was validated on site-specific test data from this and two additional sites, and common publicly available testing data. Four radiologists from each of the three clinical sites provided two-dimensional (2D) segmentations as ground truth. Segmentation performance did not differ between the network and radiologists on the test data from Sites 1 and 2 or the common public data (median Dice score Site 1, network 0.86 vs. radiologist 0.85, n = 114; Site 2, 0.91 vs. 0.91, n = 50; common: 0.93 vs. 0.90). For Site 3, an affine input layer was fine-tuned using segmentation labels, resulting in comparable performance between the network and radiologist (0.88 vs. 0.89, n = 42). Radiologist performance differed on the common test data, and the network numerically outperformed 11 of the 12 radiologists (median Dice: 0.85-0.94, n = 20). In conclusion, a deep network with a novel supervised harmonization technique matches radiologists' performance in MRI tumor segmentation across clinical sites. We make code and weights publicly available to promote reproducible AI in radiology.

Impact of deep learning reconstruction on radiation dose reduction and cancer risk in CT examinations: a real-world clinical analysis.

Kobayashi N, Nakaura T, Yoshida N, Nagayama Y, Kidoh M, Uetani H, Sakabe D, Kawamata Y, Funama Y, Tsutsumi T, Hirai T

pubmed logopapersJun 1 2025
The purpose of this study is to estimate the extent to which the implementation of deep learning reconstruction (DLR) may reduce the risk of radiation-induced cancer from CT examinations, utilizing real-world clinical data. We retrospectively analyzed scan data of adult patients who underwent body CT during two periods relative to DLR implementation at our facility: a 12-month pre-DLR phase (n = 5553) using hybrid iterative reconstruction and a 12-month post-DLR phase (n = 5494) with routine CT reconstruction transitioning to DLR. To ensure comparability between two groups, we employed propensity score matching 1:1 based on age, sex, and body mass index. Dose data were collected to estimate organ-specific equivalent doses and total effective doses. We assessed the average dose reduction post-DLR implementation and estimated the Lifetime Attributable Risk (LAR) for cancer per CT exam pre- and post-DLR implementation. The number of radiation-induced cancers before and after the implementation of DLR was also estimated. After propensity score matching, 5247 cases from each group were included in the final analysis. Post-DLR, the total effective body CT dose significantly decreased to 15.5 ± 10.3 mSv from 28.1 ± 14.0 mSv pre-DLR (p < 0.001), a 45% reduction. This dose reduction significantly lowered the radiation-induced cancer risk, especially among younger women, with the estimated annual cancer incidence from 0.247% pre-DLR to 0.130% post-DLR. The implementation of DLR has the possibility to reduce radiation dose by 45% and the risk of radiation-induced cancer from 0.247 to 0.130% as compared with the iterative reconstruction. Question Can implementing deep learning reconstruction (DLR) in routine CT scans significantly reduce radiation dose and the risk of radiation-induced cancer compared to hybrid iterative reconstruction? Findings DLR reduced the total effective body CT dose by 45% (from 28.1 ± 14.0 mSv to 15.5 ± 10.3 mSv) and decreased estimated cancer incidence from 0.247 to 0.130%. Clinical relevance Adopting DLR in clinical practice substantially lowers radiation exposure and cancer risk from CT exams, enhancing patient safety, especially for younger women, and underscores the importance of advanced imaging techniques.

Eliminating the second CT scan of dual-tracer total-body PET/CT via deep learning-based image synthesis and registration.

Lin Y, Wang K, Zheng Z, Yu H, Chen S, Tang W, He Y, Gao H, Yang R, Xie Y, Yang J, Hou X, Wang S, Shi H

pubmed logopapersJun 1 2025
This study aims to develop and validate a deep learning framework designed to eliminate the second CT scan of dual-tracer total-body PET/CT imaging. We retrospectively included three cohorts of 247 patients who underwent dual-tracer total-body PET/CT imaging on two separate days (time interval:1-11 days). Out of these, 167 underwent [<sup>68</sup>Ga]Ga-DOTATATE/[<sup>18</sup>F]FDG, 50 underwent [<sup>68</sup>Ga]Ga-PSMA-11/[<sup>18</sup>F]FDG, and 30 underwent [<sup>68</sup>Ga]Ga-FAPI-04/[<sup>18</sup>F]FDG. A deep learning framework was developed that integrates a registration generative adversarial network (RegGAN) with non-rigid registration techniques. This approach allows for the transformation of attenuation-correction CT (ACCT) images from the first scan into pseudo-ACCT images for the second scan, which are then used for attenuation and scatter correction (ASC) of the second tracer PET images. Additionally, the derived registration transform facilitates dual-tracer image fusion and analysis. The deep learning-based ASC PET images were evaluated using quantitative metrics, including mean absolute error (MAE), peak signal-to-noise ratio (PSNR), and structural similarity index measure (SSIM) across the whole body and specific regions. Furthermore, the quantitative accuracy of PET images was assessed by calculating standardized uptake value (SUV) bias in normal organs and lesions. The MAE for whole-body pseudo-ACCT images ranged from 97.64 to 112.59 HU across four tracers. The deep learning-based ASC PET images demonstrated high similarity to the ground-truth PET images. The MAE of SUV for whole-body PET images was 0.06 for [<sup>68</sup>Ga]Ga-DOTATATE, 0.08 for [<sup>68</sup>Ga]Ga-PSMA-11, 0.06 for [<sup>68</sup>Ga]Ga-FAPI-04, and 0.05 for [<sup>18</sup>F]FDG, respectively. Additionally, the median absolute percent deviation of SUV was less than 2.6% for all normal organs, while the mean absolute percent deviation of SUV was less than 3.6% for lesions across four tracers. The proposed deep learning framework, combining RegGAN and non-rigid registration, shows promise in reducing CT radiation dose for dual-tracer total-body PET/CT imaging, with successful validation across multiple tracers.

Dual-energy CT-based virtual monoenergetic imaging via unsupervised learning.

Liu CK, Chang HY, Huang HM

pubmed logopapersMay 31 2025
Since its development, virtual monoenergetic imaging (VMI) derived from dual-energy computed tomography (DECT) has been shown to be valuable in many clinical applications. However, DECT-based VMI showed increased noise at low keV levels. In this study, we proposed an unsupervised learning method to generate VMI from DECT. This means that we don't require training and labeled (i.e. high-quality VMI) data. Specifically, DECT images were fed into a deep learning (DL) based model expected to output VMI. Based on the theory that VMI obtained from image space data is a linear combination of DECT images, we used the model output (i.e. the predicted VMI) to recalculate DECT images. By minimizing the difference between the measured and recalculated DECT images, the DL-based model can be constrained itself to generate VMI from DECT images. We investigate whether the proposed DL-based method has the ability to improve the quality of VMIs. The experimental results obtained from patient data showed that the DL-based VMIs had better image quality than the conventional DECT-based VMIs. Moreover, the CT number differences between the DECT-based and DL-based VMIs were distributed within <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>±</mo></math> 10 HU for bone and <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>±</mo></math> 5 HU for brain, fat, and muscle. Except for bone, no statistically significant difference in CT number measurements was found between the DECT-based and DL-based VMIs (p > 0.01). Our preliminary results show that DL has the potential to unsupervisedly generate high-quality VMIs directly from DECT.

CineMA: A Foundation Model for Cine Cardiac MRI

Yunguan Fu, Weixi Yi, Charlotte Manisty, Anish N Bhuva, Thomas A Treibel, James C Moon, Matthew J Clarkson, Rhodri Huw Davies, Yipeng Hu

arxiv logopreprintMay 31 2025
Cardiac magnetic resonance (CMR) is a key investigation in clinical cardiovascular medicine and has been used extensively in population research. However, extracting clinically important measurements such as ejection fraction for diagnosing cardiovascular diseases remains time-consuming and subjective. We developed CineMA, a foundation AI model automating these tasks with limited labels. CineMA is a self-supervised autoencoder model trained on 74,916 cine CMR studies to reconstruct images from masked inputs. After fine-tuning, it was evaluated across eight datasets on 23 tasks from four categories: ventricle and myocardium segmentation, left and right ventricle ejection fraction calculation, disease detection and classification, and landmark localisation. CineMA is the first foundation model for cine CMR to match or outperform convolutional neural networks (CNNs). CineMA demonstrated greater label efficiency than CNNs, achieving comparable or better performance with fewer annotations. This reduces the burden of clinician labelling and supports replacing task-specific training with fine-tuning foundation models in future cardiac imaging applications. Models and code for pre-training and fine-tuning are available at https://github.com/mathpluscode/CineMA, democratising access to high-performance models that otherwise require substantial computational resources, promoting reproducibility and accelerating clinical translation.
Page 11 of 14137 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.