Sort by:
Page 11 of 19183 results

EdgeSRIE: A hybrid deep learning framework for real-time speckle reduction and image enhancement on portable ultrasound systems

Hyunwoo Cho, Jongsoo Lee, Jinbum Kang, Yangmo Yoo

arxiv logopreprintJul 5 2025
Speckle patterns in ultrasound images often obscure anatomical details, leading to diagnostic uncertainty. Recently, various deep learning (DL)-based techniques have been introduced to effectively suppress speckle; however, their high computational costs pose challenges for low-resource devices, such as portable ultrasound systems. To address this issue, EdgeSRIE, which is a lightweight hybrid DL framework for real-time speckle reduction and image enhancement in portable ultrasound imaging, is introduced. The proposed framework consists of two main branches: an unsupervised despeckling branch, which is trained by minimizing a loss function between speckled images, and a deblurring branch, which restores blurred images to sharp images. For hardware implementation, the trained network is quantized to 8-bit integer precision and deployed on a low-resource system-on-chip (SoC) with limited power consumption. In the performance evaluation with phantom and in vivo analyses, EdgeSRIE achieved the highest contrast-to-noise ratio (CNR) and average gradient magnitude (AGM) compared with the other baselines (different 2-rule-based methods and other 4-DL-based methods). Furthermore, EdgeSRIE enabled real-time inference at over 60 frames per second while satisfying computational requirements (< 20K parameters) on actual portable ultrasound hardware. These results demonstrated the feasibility of EdgeSRIE for real-time, high-quality ultrasound imaging in resource-limited environments.

A tailored deep learning approach for early detection of oral cancer using a 19-layer CNN on clinical lip and tongue images.

Liu P, Bagi K

pubmed logopapersJul 4 2025
Early and accurate detection of oral cancer plays a pivotal role in improving patient outcomes. This research introduces a custom-designed, 19-layer convolutional neural network (CNN) for the automated diagnosis of oral cancer using clinical images of the lips and tongue. The methodology integrates advanced preprocessing steps, including min-max normalization and histogram-based contrast enhancement, to optimize image features critical for reliable classification. The model is extensively validated on the publicly available Oral Cancer (Lips and Tongue) Images (OCI) dataset, which is divided into 80% training and 20% testing subsets. Comprehensive performance evaluation employs established metrics-accuracy, sensitivity, specificity, precision, and F1-score. Our CNN architecture achieved an accuracy of 99.54%, sensitivity of 95.73%, specificity of 96.21%, precision of 96.34%, and F1-score of 96.03%, demonstrating substantial improvements over prominent transfer learning benchmarks, including SqueezeNet, AlexNet, Inception, VGG19, and ResNet50, all tested under identical experimental protocols. The model's robust performance, efficient computation, and high reliability underline its practicality for clinical application and support its superiority over existing approaches. This study provides a reproducible pipeline and a new reference point for deep learning-based oral cancer detection, facilitating translation into real-world healthcare environments and promising enhanced diagnostic confidence.

Integrating MobileNetV3 and SqueezeNet for Multi-class Brain Tumor Classification.

Kantu S, Kaja HS, Kukkala V, Aly SA, Sayed K

pubmed logopapersJul 3 2025
Brain tumors pose a critical health threat requiring timely and accurate classification for effective treatment. Traditional MRI analysis is labor-intensive and prone to variability, necessitating reliable automated solutions. This study explores lightweight deep learning models for multi-class brain tumor classification across four categories: glioma, meningioma, pituitary tumors, and no tumor. We investigate the performance of MobileNetV3 and SqueezeNet individually, and a feature-fusion hybrid model that combines their embedding layers. We utilized a publicly available MRI dataset containing 7023 images with a consistent internal split (65% training, 17% validation, 18% test) to ensure reliable evaluation. MobileNetV3 offers deep semantic understanding through its expressive features, while SqueezeNet provides minimal computational overhead. Their feature-level integration creates a balanced approach between diagnostic accuracy and deployment efficiency. Experiments conducted with consistent hyperparameters and preprocessing showed MobileNetV3 achieved the highest test accuracy (99.31%) while maintaining a low parameter count (3.47M), making it suitable for real-world deployment. Grad-CAM visualizations were employed for model explainability, highlighting tumor-relevant regions and helping visualize the specific areas contributing to predictions. Our proposed models outperform several baseline architectures like VGG16 and InceptionV3, achieving high accuracy with significantly fewer parameters. These results demonstrate that well-optimized lightweight networks can deliver accurate and interpretable brain tumor classification.

CT-Mamba: A hybrid convolutional State Space Model for low-dose CT denoising.

Li L, Wei W, Yang L, Zhang W, Dong J, Liu Y, Huang H, Zhao W

pubmed logopapersJul 3 2025
Low-dose CT (LDCT) significantly reduces the radiation dose received by patients, however, dose reduction introduces additional noise and artifacts. Currently, denoising methods based on convolutional neural networks (CNNs) face limitations in long-range modeling capabilities, while Transformer-based denoising methods, although capable of powerful long-range modeling, suffer from high computational complexity. Furthermore, the denoised images predicted by deep learning-based techniques inevitably exhibit differences in noise distribution compared to normal-dose CT (NDCT) images, which can also impact the final image quality and diagnostic outcomes. This paper proposes CT-Mamba, a hybrid convolutional State Space Model for LDCT image denoising. The model combines the local feature extraction advantages of CNNs with Mamba's strength in capturing long-range dependencies, enabling it to capture both local details and global context. Additionally, we introduce an innovative spatially coherent Z-shaped scanning scheme to ensure spatial continuity between adjacent pixels in the image. We design a Mamba-driven deep noise power spectrum (NPS) loss function to guide model training, ensuring that the noise texture of the denoised LDCT images closely resembles that of NDCT images, thereby enhancing overall image quality and diagnostic value. Experimental results have demonstrated that CT-Mamba performs excellently in reducing noise in LDCT images, enhancing detail preservation, and optimizing noise texture distribution, and exhibits higher statistical similarity with the radiomics features of NDCT images. The proposed CT-Mamba demonstrates outstanding performance in LDCT denoising and holds promise as a representative approach for applying the Mamba framework to LDCT denoising tasks.

Towards reliable WMH segmentation under domain shift: An application study using maximum entropy regularization to improve uncertainty estimation.

Matzkin F, Larrazabal A, Milone DH, Dolz J, Ferrante E

pubmed logopapersJul 2 2025
Accurate segmentation of white matter hyperintensities (WMH) is crucial for clinical decision-making, particularly in the context of multiple sclerosis. However, domain shifts, such as variations in MRI machine types or acquisition parameters, pose significant challenges to model calibration and uncertainty estimation. This comparative study investigates the impact of domain shift on WMH segmentation, proposing maximum-entropy regularization techniques to enhance model calibration and uncertainty estimation. The purpose is to identify errors appearing after model deployment in clinical scenarios using predictive uncertainty as a proxy measure, since it does not require ground-truth labels to be computed. We conducted experiments using a classic U-Net architecture and evaluated maximum entropy regularization schemes to improve model calibration under domain shift on two publicly available datasets: the WMH Segmentation Challenge and the 3D-MR-MS dataset. Performance is assessed with Dice coefficient, Hausdorff distance, expected calibration error, and entropy-based uncertainty estimates. Entropy-based uncertainty estimates can anticipate segmentation errors, both in-distribution and out-of-distribution, with maximum-entropy regularization further strengthening the correlation between uncertainty and segmentation performance, while also improving model calibration under domain shift. Maximum-entropy regularization improves uncertainty estimation for WMH segmentation under domain shift. By strengthening the relationship between predictive uncertainty and segmentation errors, these methods allow models to better flag unreliable predictions without requiring ground-truth annotations. Additionally, maximum-entropy regularization contributes to better model calibration, supporting more reliable and safer deployment of deep learning models in multi-center and heterogeneous clinical environments.

Artificial Intelligence-Driven Cancer Diagnostics: Enhancing Radiology and Pathology through Reproducibility, Explainability, and Multimodality.

Khosravi P, Fuchs TJ, Ho DJ

pubmed logopapersJul 2 2025
The integration of artificial intelligence (AI) in cancer research has significantly advanced radiology, pathology, and multimodal approaches, offering unprecedented capabilities in image analysis, diagnosis, and treatment planning. AI techniques provide standardized assistance to clinicians, in which many diagnostic and predictive tasks are manually conducted, causing low reproducibility. These AI methods can additionally provide explainability to help clinicians make the best decisions for patient care. This review explores state-of-the-art AI methods, focusing on their application in image classification, image segmentation, multiple instance learning, generative models, and self-supervised learning. In radiology, AI enhances tumor detection, diagnosis, and treatment planning through advanced imaging modalities and real-time applications. In pathology, AI-driven image analysis improves cancer detection, biomarker discovery, and diagnostic consistency. Multimodal AI approaches can integrate data from radiology, pathology, and genomics to provide comprehensive diagnostic insights. Emerging trends, challenges, and future directions in AI-driven cancer research are discussed, emphasizing the transformative potential of these technologies in improving patient outcomes and advancing cancer care. This article is part of a special series: Driving Cancer Discoveries with Computational Research, Data Science, and Machine Learning/AI.

Ensemble methods and partially-supervised learning for accurate and robust automatic murine organ segmentation.

Daenen LHBA, de Bruijn J, Staut N, Verhaegen F

pubmed logopapersJul 2 2025
Delineation of multiple organs in murine µCT images is crucial for preclinical studies but requires manual volumetric segmentation, a tedious and time-consuming process prone to inter-observer variability. Automatic deep learning-based segmentation can improve speed and reproducibility. While 2D and 3D deep learning models have been developed for anatomical segmentation, their generalization to external datasets has not been extensively investigated. Furthermore, ensemble learning, combining predictions of multiple 2D models, and partially-supervised learning (PSL), enabling training on partially-labeled datasets, have not been explored for preclinical purposes. This study demonstrates the first use of PSL frameworks and the superiority of 3D models in accuracy and generalizability to external datasets. Ensemble methods performed on par or better than the best individual 2D network, but only 3D models consistently generalized to external datasets (Dice Similarity Coefficient (DSC) > 0.8). PSL frameworks showed promising results across various datasets and organs, but its generalization to external data can be improved for some organs. This work highlights the superiority of 3D models over 2D and ensemble counterparts in accuracy and generalizability for murine µCT image segmentation. Additionally, a promising PSL framework is presented for leveraging multiple datasets without complete annotations. Our model can increase time-efficiency and improve reproducibility in preclinical radiotherapy workflows by circumventing manual contouring bottlenecks. Moreover, high segmentation accuracy of 3D models allows monitoring multiple organs over time using repeated µCT imaging, potentially reducing the number of mice sacrificed in studies, adhering to the 3R principle, specifically Reduction and Refinement.

Clinical value of the 70-kVp ultra-low-dose CT pulmonary angiography with deep learning image reconstruction.

Zhang Y, Wang L, Yuan D, Qi K, Zhang M, Zhang W, Gao J, Liu J

pubmed logopapersJul 2 2025
This study aims to assess the feasibility of "double-low," low radiation dosage and low contrast media dosage, CT pulmonary angiography (CTPA) based on deep-learning image reconstruction (DLIR) algorithms. One hundred consecutive patients (41 females; average age 60.9 years, range 18-90) were prospectively scanned on multi-detector CT systems. Fifty patients in the conventional-dose group (CD group) underwent CTPA with 100 kV protocol using the traditional iterative reconstruction algorithm, and 50 patients in the low-dose group (LD group) underwent CTPA with a 70 kVp DLIR protocol. Radiation and contrast agent doses were recorded and compared between groups. Objective parameters were measured and compared. Two radiologists evaluated images for overall image quality, artifacts, and image contrast separately on a 5-point scale. The furthest visible branches were compared between groups. Compared to the control group, the study group reduced the dose-length product by 80.3% (p < 0.01) and the contrast media dose by 33.3%. CT values, SD values, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) showed no statistically significant differences (all p > 0.05) between the LD and CD groups. The overall image quality scores were comparable between the LD and CD groups (p > 0.05), with good in-reader agreement (k = 0.75). More peripheral pulmonary vessels could be assessed in the LD group compared with the CD group. 70 kVp combined with DLIR reconstruction for CTPA can further reduce radiation and contrast agent dose while maintaining image quality and increasing the visibility on the pulmonary artery distal branches. Question Elevated radiation exposure and substantial doses of contrast media during CT pulmonary angiography (CTPA) augment patient risks. Findings The "double-low" CT pulmonary angiography protocol can diminish radiation doses by 80.3% and minimize contrast doses by one-third while maintaining image quality. Clinical relevance With deep learning algorithms, we confirmed that CTPA images maintained excellent quality despite reduced radiation and contrast dosages, helping to reduce radiation exposure and kidney burden on patients. The "double-low" CTPA protocol, complemented by deep learning image reconstruction, prioritizes patient safety.

Mind the Detail: Uncovering Clinically Relevant Image Details in Accelerated MRI with Semantically Diverse Reconstructions

Jan Nikolas Morshuis, Christian Schlarmann, Thomas Küstner, Christian F. Baumgartner, Matthias Hein

arxiv logopreprintJul 1 2025
In recent years, accelerated MRI reconstruction based on deep learning has led to significant improvements in image quality with impressive results for high acceleration factors. However, from a clinical perspective image quality is only secondary; much more important is that all clinically relevant information is preserved in the reconstruction from heavily undersampled data. In this paper, we show that existing techniques, even when considering resampling for diffusion-based reconstruction, can fail to reconstruct small and rare pathologies, thus leading to potentially wrong diagnosis decisions (false negatives). To uncover the potentially missing clinical information we propose ``Semantically Diverse Reconstructions'' (\SDR), a method which, given an original reconstruction, generates novel reconstructions with enhanced semantic variability while all of them are fully consistent with the measured data. To evaluate \SDR automatically we train an object detector on the fastMRI+ dataset. We show that \SDR significantly reduces the chance of false-negative diagnoses (higher recall) and improves mean average precision compared to the original reconstructions. The code is available on https://github.com/NikolasMorshuis/SDR

Multi-parametric MRI Habitat Radiomics Based on Interpretable Machine Learning for Preoperative Assessment of Microsatellite Instability in Rectal Cancer.

Wang Y, Xie B, Wang K, Zou W, Liu A, Xue Z, Liu M, Ma Y

pubmed logopapersJul 1 2025
This study constructed an interpretable machine learning model based on multi-parameter MRI sub-region habitat radiomics and clinicopathological features, aiming to preoperatively evaluate the microsatellite instability (MSI) status of rectal cancer (RC) patients. This retrospective study recruited 291 rectal cancer patients with pathologically confirmed MSI status and randomly divided them into a training cohort and a testing cohort at a ratio of 8:2. First, the K-means method was used for cluster analysis of tumor voxels, and sub-region radiomics features and classical radiomics features were respectively extracted from multi-parameter MRI sequences. Then, the synthetic minority over-sampling technique method was used to balance the sample size, and finally, the features were screened. Prediction models were established using logistic regression based on clinicopathological variables, classical radiomics features, and MSI-related sub-region radiomics features, and the contribution of each feature to the model decision was quantified by the Shapley-Additive-Explanations (SHAP) algorithm. The area under the curve (AUC) of the sub-region radiomics model in the training and testing groups was 0.848 and 0.8, respectively, both better than that of the classical radiomics and clinical models. The combined model performed the best, with AUCs of 0.908 and 0.863 in the training and testing groups, respectively. We developed and validated a robust combined model that integrates clinical variables, classical radiomics features, and sub-region radiomics features to accurately determine the MSI status of RC patients. We visualized the prediction process using SHAP, enabling more effective personalized treatment plans and ultimately improving RC patient survival rates.
Page 11 of 19183 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.