Sort by:
Page 109 of 1411410 results

Deep Learning-Based Opportunistic CT Osteoporosis Screening and Establishment of Normative Values

Westerhoff, M., Gyftopoulos, S., Dane, B., Vega, E., Murdock, D., Lindow, N., Herter, F., Bousabarah, K., Recht, M. P., Bredella, M. A.

medrxiv logopreprintJun 3 2025
BackgroundOsteoporosis is underdiagnosed and undertreated prompting the exploration of opportunistic screening using CT and artificial intelligence (AI). PurposeTo develop a reproducible deep learning-based convolutional neural network to automatically place a 3D region of interest (ROI) in trabecular bone, develop a correction method to normalize attenuation across different CT protocols or and scanner models, and to establish thresholds for osteoporosis in a large diverse population. MethodsA deep learning-based method was developed to automatically quantify trabecular attenuation using a 3D ROI of the thoracic and lumbar spine on chest, abdomen, or spine CTs, adjusted for different tube voltages and scanner models. Normative values, thresholds for osteoporosis of trabecular attenuation of the spine were established across a diverse population, stratified by age, sex, race, and ethnicity using reported prevalence of osteoporosis by the WHO. Results538,946 CT examinations from 283,499 patients (mean age 65 years{+/-}15, 51.2% women and 55.5% White), performed on 50 scanner models using six different tube voltages were analyzed. Hounsfield Units at 80 kVp versus 120 kVp differed by 23%, and different scanner models resulted in differences of values by < 10%. Automated ROI placement of 1496 vertebra was validated by manual radiologist review, demonstrating >99% agreement. Mean trabecular attenuation was higher in young women (<50 years) than young men (p<.001) and decreased with age, with a steeper decline in postmenopausal women. In patients older than 50 years, trabecular attention was higher in males than females (p<.001). Trabecular attenuation was highest in Blacks, followed by Asians and lowest in Whites (p<.001). The threshold for L1 in diagnosing osteoporosis was 80 HU. ConclusionDeep learning-based automated opportunistic osteoporosis screening can identify patients with low bone mineral density that undergo CT scans for clinical purposes on different scanners and protocols. Key Results 3 main results/conclusionsO_LIIn a study of 538,946 CT examinations performed in 283,499 patients using different scanner models and imaging protocols, an automated deep learning-based convolutional neural network was able to accurately place a three-dimensional regions of interest within thoracic and lumbar vertebra to measure trabecular attenuation. C_LIO_LITube voltage had a larger influence on attenuation values (23%) than scanner model (<10%). C_LIO_LIA threshold of 80 HU was identified for L1 to diagnose osteoporosis using an automated three-dimensional region of interest. C_LI

Prediction of etiology and prognosis based on hematoma location of spontaneous intracerebral hemorrhage: a multicenter diagnostic study.

Liang J, Tan W, Xie S, Zheng L, Li C, Zhong Y, Li J, Zhou C, Zhang Z, Zhou Z, Gong P, Chen X, Zhang L, Cheng X, Zhang Q, Lu G

pubmed logopapersJun 3 2025
The location of the hemorrhagic of spontaneous intracerebral hemorrhage (sICH) is clinically pivotal for both identifying its etiology and prognosis, but comprehensive and quantitative modeling approach has yet to be thoroughly explored. We employed lesion-symptom mapping to extract the location features of sICH. We registered patients' non-contrast computed tomography image and hematoma masks with standard human brain templates to identify specific affected brain regions. Then, we generated hemorrhage probabilistic maps of different etiologies and prognoses. By integrating radiomics and clinical features into multiple logistic regression models, we developed and validated optimal etiological and prognostic models across three centers, comprising 1162 sICH patients. Hematomas of different etiology have unique spatial distributions. The location-based features demonstrated robust classification of the etiology of spontaneous intracerebral hemorrhage (sICH), with a mean area under the curve (AUC) of 0.825 across diverse datasets. These features provided significant incremental value when integrated into predictive models (fusion model mean AUC = 0.915), outperforming models relying solely on clinical features (mean AUC = 0.828). In prognostic assessments, both hematoma location (mean AUC = 0.762) and radiomic features (mean AUC = 0.837) contributed substantial incremental predictive value, as evidenced by the fusion model's mean AUC of 0.873, compared to models utilizing clinical features alone (mean AUC = 0.771). Our results show that location features were more intrinsically robust, generalizable relative, strong interpretability to the complex modeling of radiomics, our approach demonstrated a novel interpretable, streamlined, comprehensive etiologic classification and prognostic prediction framework for sICH.

Ultra-High-Resolution Photon-Counting-Detector CT with a Dedicated Denoising Convolutional Neural Network for Enhanced Temporal Bone Imaging.

Chang S, Benson JC, Lane JI, Bruesewitz MR, Swicklik JR, Thorne JE, Koons EK, Carlson ML, McCollough CH, Leng S

pubmed logopapersJun 3 2025
Ultra-high-resolution (UHR) photon-counting-detector (PCD) CT improves image resolution but increases noise, necessitating the use of smoother reconstruction kernels that reduce resolution below the 0.125-mm maximum spatial resolution. A denoising convolutional neural network (CNN) was developed to reduce noise in images reconstructed with the available sharpest reconstruction kernel while preserving resolution for enhanced temporal bone visualization to address this issue. With institutional review board approval, the CNN was trained on 6 patient cases of clinical temporal bone imaging (1885 images) and tested on 20 independent cases using a dual-source PCD-CT (NAEOTOM Alpha). Images were reconstructed using quantum iterative reconstruction at strength 3 (QIR3) with both a clinical routine kernel (Hr84) and the sharpest available head kernel (Hr96). The CNN was applied to images reconstructed with Hr96 and QIR1 kernel. For each case, three series of images (Hr84-QIR3, Hr96-QIR3, and Hr96-CNN) were randomized for review by 2 neuroradiologists assessing the overall quality and delineating the modiolus, stapes footplate, and incudomallear joint. The CNN reduced noise by 80% compared with Hr96-QIR3 and by 50% relative to Hr84-QIR3, while maintaining high resolution. Compared with the conventional method at the same kernel (Hr96-QIR3), Hr96-CNN significantly decreased image noise (from 204.63 to 47.35 HU) and improved its structural similarity index (from 0.72 to 0.99). Hr96-CNN images ranked higher than Hr84-QIR3 and Hr96-QIR3 in overall quality (<i>P</i> < .001). Readers preferred Hr96-CNN for all 3 structures. The proposed CNN significantly reduced image noise in UHR PCD-CT, enabling the use of the sharpest kernel. This combination greatly enhanced diagnostic image quality and anatomic visualization.

Developing a CT radiomics-based model for assessing split renal function using machine learning.

Zhan Y, Zheng J, Chen X, Chen Y, Fang C, Lai C, Dai M, Wu Z, Wu H, Yu T, Huang J, Yu H

pubmed logopapersJun 3 2025
This study aims to investigate whether non-contrast computed tomography radiomics can effectively reflect split renal function and to develop a radiomics model for its assessment. This retrospective study included kidneys from the study center and split them into training (70%) and testing (30%) sets. Renal dynamic imaging was used as the reference standard for measuring split renal function. Based on chronic kidney disease staging, kidneys were categorized into three groups according to glomerular filtration rate: > 45 ml/min/1.73 m<sup>2</sup>, 30-45 ml/min/1.73 m<sup>2</sup>, and < 30 ml/min/1.73 m<sup>2</sup>.Features were selected based on feature importance ranking from a tree model, and a random forest radiomics model was built. A total of 543 kidneys were included, with 381 in the training set and 162 in the testing set. In the training set, 16 features identified as most important for distinguishing between the groups were ultimately included to develop the random forest model. The model demonstrated good discriminatory ability in the testing set. The AUC for the > 45 ml/min/1.73 m<sup>2</sup>, 30-45 ml/min/1.73 m<sup>2</sup>, and < 30 ml/min/1.73 m<sup>2</sup> categories were 0.859 (95% CI 0.804-0.910), 0.679 (95% CI 0.589-0.760), and 0.901 (95% CI 0.848-0.946), respectively. The calibration curves for the kidneys in each group closely align with the diagonal, with Hosmer-Lemeshow test P-values of 0.124, 0.241, and 0.199 for the three groups, respectively (all P > 0.05). The decision curve analysis confirmed the radiomics model's clinical utility, demonstrating significantly higher net benefit than both treat-all and treat-none strategies at clinically relevant probability thresholds: 1-69% and 71-75% for the > 45 ml/min/1.73 m<sup>2</sup> group, 15-d50% for the 30-45 ml/min/1.73 m<sup>2</sup> group, and 0-99% for the < 30 ml/min/1.73 m<sup>2</sup> group. Non-contrast computed tomography radiomics can effectively reflect split renal function information, and the model developed based on it can accurately assess split renal function, holding great potential for clinical application.

Automated Classification of Cervical Spinal Stenosis using Deep Learning on CT Scans.

Zhang YL, Huang JW, Li KY, Li HL, Lin XX, Ye HB, Chen YH, Tian NF

pubmed logopapersJun 3 2025
Retrospective study. To develop and validate a computed tomography-based deep learning(DL) model for diagnosing cervical spinal stenosis(CSS). Although magnetic resonance imaging (MRI) is widely used for diagnosing CSS, its inherent limitations, including prolonged scanning time, limited availability in resource-constrained settings, and contraindications for patients with metallic implants, make computed tomography (CT) a critical alternative in specific clinical scenarios. The development of CT-based DL models for CSS detection holds promise in transcending the diagnostic efficacy limitations of conventional CT imaging, thereby serving as an intelligent auxiliary tool to optimize healthcare resource allocation. Paired CT/MRI images were collected. CT images were divided into training, validation, and test sets in an 8:1:1 ratio. The two-stage model architecture employed: (1) a Faster R-CNN-based detection model for localization, annotation, and extraction of regions of interest (ROI); (2) comparison of 16 convolutional neural network (CNN) models for stenosis classification to select the best-performing model. The evaluation metrics included accuracy, F1-score, and Cohen's κ coefficient, with comparisons made against diagnostic results from physicians with varying years of experience. In the multiclass classification task, four high-performing models (DL1-b0, DL2-121, DL3-101, and DL4-26d) achieved accuracies of 88.74%, 89.40%, 89.40%, and 88.08%, respectively. All models demonstrated >80% consistency with senior physicians and >70% consistency with junior physicians.In the binary classification task, the models achieved accuracies of 94.70%, 96.03%, 96.03%, and 94.70%, respectively. All four models demonstrated consistency rates slightly below 90% with junior physicians. However, when compared with senior physicians, three models (excluding DL4-26d) exhibited consistency rates exceeding 90%. The DL model developed in this study demonstrated high accuracy in CT image analysis of CSS, with a diagnostic performance comparable to that of senior physicians.

Deep Learning Pipeline for Automated Assessment of Distances Between Tonsillar Tumors and the Internal Carotid Artery.

Jain A, Amanian A, Nagururu N, Creighton FX, Prisman E

pubmed logopapersJun 3 2025
Evaluating the minimum distance (dTICA) between the internal carotid artery (ICA) and tonsillar tumors (TT) on imaging is essential for preoperative planning; we propose a tool to automatically extract dTICA. CT scans of 96 patients with TT were selected from the cancer imaging archive. nnU-Net, a deep learning framework, was implemented to automatically segment both the TT and ICA from these scans. Dice similarity coefficient (DSC) and average hausdorff distance (AHD) were used to evaluate the performance of the nnU-Net. Thereafter, an automated tool was built to calculate the magnitude of dTICA from these segmentations. The average DSC and AHD were 0.67, 2.44 mm, and 0.83, 0.49 mm for the TT and ICA, respectively. The mean dTICA was 6.66 mm and statistically varied by tumor T stage (p = 0.00456). The proposed pipeline can accurately and automatically capture dTICA, potentially assisting clinicians in preoperative evaluation.

Tomographic Foundation Model -- FORCE: Flow-Oriented Reconstruction Conditioning Engine

Wenjun Xia, Chuang Niu, Ge Wang

arxiv logopreprintJun 2 2025
Computed tomography (CT) is a major medical imaging modality. Clinical CT scenarios, such as low-dose screening, sparse-view scanning, and metal implants, often lead to severe noise and artifacts in reconstructed images, requiring improved reconstruction techniques. The introduction of deep learning has significantly advanced CT image reconstruction. However, obtaining paired training data remains rather challenging due to patient motion and other constraints. Although deep learning methods can still perform well with approximately paired data, they inherently carry the risk of hallucination due to data inconsistencies and model instability. In this paper, we integrate the data fidelity with the state-of-the-art generative AI model, referred to as the Poisson flow generative model (PFGM) with a generalized version PFGM++, and propose a novel CT framework: Flow-Oriented Reconstruction Conditioning Engine (FORCE). In our experiments, the proposed method shows superior performance in various CT imaging tasks, outperforming existing unsupervised reconstruction approaches.

Medical World Model: Generative Simulation of Tumor Evolution for Treatment Planning

Yijun Yang, Zhao-Yang Wang, Qiuping Liu, Shuwen Sun, Kang Wang, Rama Chellappa, Zongwei Zhou, Alan Yuille, Lei Zhu, Yu-Dong Zhang, Jieneng Chen

arxiv logopreprintJun 2 2025
Providing effective treatment and making informed clinical decisions are essential goals of modern medicine and clinical care. We are interested in simulating disease dynamics for clinical decision-making, leveraging recent advances in large generative models. To this end, we introduce the Medical World Model (MeWM), the first world model in medicine that visually predicts future disease states based on clinical decisions. MeWM comprises (i) vision-language models to serve as policy models, and (ii) tumor generative models as dynamics models. The policy model generates action plans, such as clinical treatments, while the dynamics model simulates tumor progression or regression under given treatment conditions. Building on this, we propose the inverse dynamics model that applies survival analysis to the simulated post-treatment tumor, enabling the evaluation of treatment efficacy and the selection of the optimal clinical action plan. As a result, the proposed MeWM simulates disease dynamics by synthesizing post-treatment tumors, with state-of-the-art specificity in Turing tests evaluated by radiologists. Simultaneously, its inverse dynamics model outperforms medical-specialized GPTs in optimizing individualized treatment protocols across all metrics. Notably, MeWM improves clinical decision-making for interventional physicians, boosting F1-score in selecting the optimal TACE protocol by 13%, paving the way for future integration of medical world models as the second readers.

SPCF-YOLO: An Efficient Feature Optimization Model for Real-Time Lung Nodule Detection.

Ren Y, Shi C, Zhu D, Zhou C

pubmed logopapersJun 2 2025
Accurate pulmonary nodule detection in CT imaging remains challenging due to fragmented feature integration in conventional deep learning models. This paper proposes SPCF-YOLO, a real-time detection framework that synergizes hierarchical feature fusion with anatomical context modeling. First, the space-to-depth convolution (SPDConv) module preserves fine-grained features in low-resolution images through spatial dimension reorganization. Second, the shared feature pyramid convolution (SFPConv) module is designed to dynamically extract multi-scale contextual information using multi-dilation-rate convolutional layers. Incorporating a small object detection layer aims to improve sensitivity to small nodules. This is achieved in combination with the improved pyramid squeeze attention (PSA) module and the improved contextual transformer (CoTB) module, which enhance global channel dependencies and reduce feature loss. The model achieves 82.8% mean average precision (mAP) and 82.9% F1 score on LUNA16 at 151 frames per second (representing improvements of 17.5% and 82.9% over YOLOv8 respectively), demonstrating real-time clinical viability. Cross-modality validation on SIIM-COVID-19 shows 1.5% improvement, confirming robust generalization.

Exploring <i>SLC25A42</i> as a Radiogenomic Marker from the Perioperative Stage to Chemotherapy in Hepatitis-Related Hepatocellular Carcinoma.

Dou L, Jiang J, Yao H, Zhang B, Wang X

pubmed logopapersJun 2 2025
<b><i>Background:</i></b> The molecular mechanisms driving hepatocellular carcinoma (HCC) and predict the chemotherapy sensitive remain unclear; therefore, identification of these key biomarkers is essential for early diagnosis and treatment of HCC. <b><i>Method:</i></b> We collected and processed Computed Tomography (CT) and clinical data from 116 patients with autoimmune hepatitis (AIH) and HCC who came to our hospital's Liver Cancer Center. We then identified and extracted important characteristic features of significant patient images and correlated them with mitochondria-related genes using machine learning techniques such as multihead attention networks, lasso regression, principal component analysis (PCA), and support vector machines (SVM). These genes were integrated into radiomics signature models to explore their role in disease progression. We further correlated these results with clinical variables to screen for driver genes and evaluate the predict ability of chemotherapy sensitive of key genes in liver cancer (LC) patients. Finally, qPCR was used to validate the expression of this gene in patient samples. <b><i>Results:</i></b> Our study utilized attention networks to identify disease regions in medical images with 97% accuracy and an AUC of 94%. We extracted 942 imaging features, identifying five key features through lasso regression that accurately differentiate AIH from HCC. Transcriptome analysis revealed 132 upregulated and 101 downregulated genes in AIH, with 45 significant genes identified by XGBOOST. In HCC analysis, PCA and random forest highlighted 11 key features. Among mitochondrial genes, <i>SLC25A42</i> correlated positively with normal tissue imaging features but negatively with cancerous tissues and was identified as a driver gene. Low expression of <i>SLC25A42</i> was associated with chemotherapy sensitive in HCC patients. <b><i>Conclusions:</i></b> In conclusion, machine learning modeling combined with genomic profiling provides a promising approach to identify the driver gene <i>SLC25A42</i> in LC, which may help improve diagnostic accuracy and chemotherapy sensitivity for this disease.
Page 109 of 1411410 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.