Sort by:
Page 107 of 1071070 results

OA-HybridCNN (OHC): An advanced deep learning fusion model for enhanced diagnostic accuracy in knee osteoarthritis imaging.

Liao Y, Yang G, Pan W, Lu Y

pubmed logopapersJan 1 2025
Knee osteoarthritis (KOA) is a leading cause of disability globally. Early and accurate diagnosis is paramount in preventing its progression and improving patients' quality of life. However, the inconsistency in radiologists' expertise and the onset of visual fatigue during prolonged image analysis often compromise diagnostic accuracy, highlighting the need for automated diagnostic solutions. In this study, we present an advanced deep learning model, OA-HybridCNN (OHC), which integrates ResNet and DenseNet architectures. This integration effectively addresses the gradient vanishing issue in DenseNet and augments prediction accuracy. To evaluate its performance, we conducted a thorough comparison with other deep learning models using five-fold cross-validation and external tests. The OHC model outperformed its counterparts across all performance metrics. In external testing, OHC exhibited an accuracy of 91.77%, precision of 92.34%, and recall of 91.36%. During the five-fold cross-validation, its average AUC and ACC were 86.34% and 87.42%, respectively. Deep learning, particularly exemplified by the OHC model, has greatly improved the efficiency and accuracy of KOA imaging diagnosis. The adoption of such technologies not only alleviates the burden on radiologists but also significantly enhances diagnostic precision.

Application of artificial intelligence in X-ray imaging analysis for knee arthroplasty: A systematic review.

Zhang Z, Hui X, Tao H, Fu Z, Cai Z, Zhou S, Yang K

pubmed logopapersJan 1 2025
Artificial intelligence (AI) is a promising and powerful technology with increasing use in orthopedics. The global morbidity of knee arthroplasty is expanding. This study investigated the use of AI algorithms to review radiographs of knee arthroplasty. The Ovid-Embase, Web of Science, Cochrane Library, PubMed, China National Knowledge Infrastructure (CNKI), WeiPu (VIP), WanFang, and China Biology Medicine (CBM) databases were systematically screened from inception to March 2024 (PROSPERO study protocol registration: CRD42024507549). The quality assessment of the diagnostic accuracy studies tool assessed the risk of bias. A total of 21 studies were included in the analysis. Of these, 10 studies identified and classified implant brands, 6 measured implant size and component alignment, 3 detected implant loosening, and 2 diagnosed prosthetic joint infections (PJI). For classifying and identifying implant brands, 5 studies demonstrated near-perfect prediction with an area under the curve (AUC) ranging from 0.98 to 1.0, and 10 achieved accuracy (ACC) between 96-100%. Regarding implant measurement, one study showed an AUC of 0.62, and two others exhibited over 80% ACC in determining component sizes. Moreover, Artificial intelligence showed good to excellent reliability across all angles in three separate studies (Intraclass Correlation Coefficient > 0.78). In predicting PJI, one study achieved an AUC of 0.91 with a corresponding ACC of 90.5%, while another reported a positive predictive value ranging from 75% to 85%. For detecting implant loosening, the AUC was found to be at least as high as 0.976 with ACC ranging from 85.8% to 97.5%. These studies show that AI is promising in recognizing implants in knee arthroplasty. Future research should follow a rigorous approach to AI development, with comprehensive and transparent reporting of methods and the creation of open-source software programs and commercial tools that can provide clinicians with objective clinical decisions.

Recognition of flight cadets brain functional magnetic resonance imaging data based on machine learning analysis.

Ye L, Weng S, Yan D, Ma S, Chen X

pubmed logopapersJan 1 2025
The rapid advancement of the civil aviation industry has attracted significant attention to research on pilots. However, the brain changes experienced by flight cadets following their training remain, to some extent, an unexplored territory compared to those of the general population. The aim of this study was to examine the impact of flight training on brain function by employing machine learning(ML) techniques. We collected resting-state functional magnetic resonance imaging (resting-state fMRI) data from 79 flight cadets and ground program cadets, extracting blood oxygenation level-dependent (BOLD) signal, amplitude of low frequency fluctuation (ALFF), regional homogeneity (ReHo), and functional connectivity (FC) metrics as feature inputs for ML models. After conducting feature selection using a two-sample t-test, we established various ML classification models, including Extreme Gradient Boosting (XGBoost), Logistic Regression (LR), Random Forest (RF), Support Vector Machine (SVM), and Gaussian Naive Bayes (GNB). Comparative analysis of the model results revealed that the LR classifier based on BOLD signals could accurately distinguish flight cadets from the general population, achieving an AUC of 83.75% and an accuracy of 0.93. Furthermore, an analysis of the features contributing significantly to the ML classification models indicated that these features were predominantly located in brain regions associated with auditory-visual processing, motor function, emotional regulation, and cognition, primarily within the Default Mode Network (DMN), Visual Network (VN), and SomatoMotor Network (SMN). These findings suggest that flight-trained cadets may exhibit enhanced functional dynamics and cognitive flexibility.

Clinical-radiomics models with machine-learning algorithms to distinguish uncomplicated from complicated acute appendicitis in adults: a multiphase multicenter cohort study.

Li L, Sun Y, Sun Y, Gao Y, Zhang B, Qi R, Sheng F, Yang X, Liu X, Liu L, Lu C, Chen L, Zhang K

pubmed logopapersJan 1 2025
Increasing evidence suggests that non-operative management (NOM) with antibiotics could serve as a safe alternative to surgery for the treatment of uncomplicated acute appendicitis (AA). However, accurately differentiating between uncomplicated and complicated AA remains challenging. Our aim was to develop and validate machine-learning-based diagnostic models to differentiate uncomplicated from complicated AA. This was a multicenter cohort trial conducted from January 2021 and December 2022 across five tertiary hospitals. Three distinct diagnostic models were created, namely, the clinical-parameter-based model, the CT-radiomics-based model, and the clinical-radiomics-fused model. These models were developed using a comprehensive set of eight machine-learning algorithms, which included logistic regression (LR), support vector machine (SVM), random forest (RF), decision tree (DT), gradient boosting (GB), K-nearest neighbors (KNN), Gaussian Naïve Bayes (GNB), and multi-layer perceptron (MLP). The performance and accuracy of these diverse models were compared. All models exhibited excellent diagnostic performance in the training cohort, achieving a maximal AUC of 1.00. For the clinical-parameter model, the GB classifier yielded the optimal AUC of 0.77 (95% confidence interval [CI]: 0.64-0.90) in the testing cohort, while the LR classifier yielded the optimal AUC of 0.76 (95% CI: 0.66-0.86) in the validation cohort. For the CT-radiomics-based model, GB classifier achieved the best AUC of 0.74 (95% CI: 0.60-0.88) in the testing cohort, and SVM yielded an optimal AUC of 0.63 (95% CI: 0.51-0.75) in the validation cohort. For the clinical-radiomics-fused model, RF classifier yielded an optimal AUC of 0.84 (95% CI: 0.74-0.95) in the testing cohort and 0.76 (95% CI: 0.67-0.86) in the validation cohort. An open-access, user-friendly online tool was developed for clinical application. This multicenter study suggests that the clinical-radiomics-fused model, constructed using RF algorithm, effectively differentiated between complicated and uncomplicated AA.

Brain tumor classification using MRI images and deep learning techniques.

Wong Y, Su ELM, Yeong CF, Holderbaum W, Yang C

pubmed logopapersJan 1 2025
Brain tumors pose a significant medical challenge, necessitating early detection and precise classification for effective treatment. This study aims to address this challenge by introducing an automated brain tumor classification system that utilizes deep learning (DL) and Magnetic Resonance Imaging (MRI) images. The main purpose of this research is to develop a model that can accurately detect and classify different types of brain tumors, including glioma, meningioma, pituitary tumors, and normal brain scans. A convolutional neural network (CNN) architecture with pretrained VGG16 as the base model is employed, and diverse public datasets are utilized to ensure comprehensive representation. Data augmentation techniques are employed to enhance the training dataset, resulting in a total of 17,136 brain MRI images across the four classes. The accuracy of this model was 99.24%, a higher accuracy than other similar works, demonstrating its potential clinical utility. This higher accuracy was achieved mainly due to the utilization of a large and diverse dataset, the improvement of network configuration, the application of a fine-tuning strategy to adjust pretrained weights, and the implementation of data augmentation techniques in enhancing classification performance for brain tumor detection. In addition, a web application was developed by leveraging HTML and Dash components to enhance usability, allowing for easy image upload and tumor prediction. By harnessing artificial intelligence (AI), the developed system addresses the need to reduce human error and enhance diagnostic accuracy. The proposed approach provides an efficient and reliable solution for brain tumor classification, facilitating early diagnosis and enabling timely medical interventions. This work signifies a potential advancement in brain tumor classification, promising improved patient care and outcomes.

Convolutional neural network using magnetic resonance brain imaging to predict outcome from tuberculosis meningitis.

Dong THK, Canas LS, Donovan J, Beasley D, Thuong-Thuong NT, Phu NH, Ha NT, Ourselin S, Razavi R, Thwaites GE, Modat M

pubmed logopapersJan 1 2025
Tuberculous meningitis (TBM) leads to high mortality, especially amongst individuals with HIV. Predicting the incidence of disease-related complications is challenging, for which purpose the value of brain magnetic resonance imaging (MRI) has not been well investigated. We used a convolutional neural network (CNN) to explore the complementary contribution of brain MRI to the conventional prognostic determinants. We pooled data from two randomised control trials of HIV-positive and HIV-negative adults with clinical TBM in Vietnam to predict the occurrence of death or new neurological complications in the first two months after the subject's first MRI session. We developed and compared three models: a logistic regression with clinical, demographic and laboratory data as reference, a CNN that utilised only T1-weighted MRI volumes, and a model that fused all available information. All models were fine-tuned using two repetitions of 5-fold cross-validation. The final evaluation was based on a random 70/30 training/test split, stratified by the outcome and HIV status. Based on the selected model, we explored the interpretability maps derived from the models. 215 patients were included, with an event prevalence of 22.3%. On the test set our non-imaging model had higher AUC (71.2% [Formula: see text] 1.1%) than the imaging-only model (67.3% [Formula: see text] 2.6%). The fused model was superior to both, with an average AUC = 77.3% [Formula: see text] 4.0% in the test set. The non-imaging variables were more informative in the HIV-positive group, while the imaging features were more predictive in the HIV-negative group. All three models performed better in the HIV-negative cohort. The interpretability maps show the model's focus on the lateral fissures, the corpus callosum, the midbrain, and peri-ventricular tissues. Imaging information can provide added value to predict unwanted outcomes of TBM. However, to confirm this finding, a larger dataset is needed.

AISIM: evaluating impacts of user interface elements of an AI assisting tool.

Wiratchawa K, Wanna Y, Junsawang P, Titapun A, Techasen A, Boonrod A, Laopaiboon V, Chamadol N, Bulathwela S, Intharah T

pubmed logopapersJan 1 2025
While Artificial Intelligence (AI) has demonstrated human-level capabilities in many prediction tasks, collaboration between humans and machines is crucial in mission-critical applications, especially in the healthcare sector. An important factor that enables successful human-AI collaboration is the user interface (UI). This paper evaluated the UI of BiTNet, an intelligent assisting tool for human biliary tract diagnosis via ultrasound images. We evaluated the UI of the assisting tool with 11 healthcare professionals through two main research questions: 1) did the assisting tool help improve the diagnosis performance of the healthcare professionals who use the tool? and 2) how did different UI elements of the assisting tool influence the users' decisions? To analyze the impacts of different UI elements without multiple rounds of experiments, we propose the novel AISIM strategy. We demonstrated that our proposed strategy, AISIM, can be used to analyze the influence of different elements in the user interface in one go. Our main findings show that the assisting tool improved the diagnostic performance of healthcare professionals from different levels of experience (OR  = 3.326, p-value <10-15). In addition, high AI prediction confidence and correct AI attention area provided higher than twice the odds that the users would follow the AI suggestion. Finally, the interview results agreed with the experimental result that BiTNet boosted the users' confidence when they were assigned to diagnose abnormality in the biliary tract from the ultrasound images.

Auxiliary Diagnosis of Pulmonary Nodules' Benignancy and Malignancy Based on Machine Learning: A Retrospective Study.

Wang W, Yang B, Wu H, Che H, Tong Y, Zhang B, Liu H, Chen Y

pubmed logopapersJan 1 2025
Lung cancer, one of the most lethal malignancies globally, often presents insidiously as pulmonary nodules. Its nonspecific clinical presentation and heterogeneous imaging characteristics hinder accurate differentiation between benign and malignant lesions, while biopsy's invasiveness and procedural constraints underscore the critical need for non-invasive early diagnostic approaches. In this retrospective study, we analyzed outpatient and inpatient records from the First Medical Center of Chinese PLA General Hospital between 2011 and 2021, focusing on pulmonary nodules measuring 5-30mm on CT scans without overt signs of malignancy. Pathological examination served as the reference standard. Comparative experiments evaluated SVM, RF, XGBoost, FNN, and Atten_FNN using five-fold cross-validation to assess AUC, sensitivity, and specificity. The dataset was split 70%/30%, and stratified five-fold cross-validation was applied to the training set. The optimal model was interpreted with SHAP to identify the most influential predictive features. This study enrolled 3355 patients, including 1156 with benign and 2199 with malignant pulmonary nodules. The Atten_FNN model demonstrated superior performance in five-fold cross-validation, achieving an AUC of 0.82, accuracy of 0.75, sensitivity of 0.77, and F1 score of 0.80. SHAP analysis revealed key predictive factors: demographic variables (age, sex, BMI), CT-derived features (maximum nodule diameter, morphology, density, calcification, ground-glass opacity), and laboratory biomarkers (neuroendocrine markers, carcinoembryonic antigen). This study integrates electronic medical records and pathology data to predict pulmonary nodule malignancy using machine/deep learning models. SHAP-based interpretability analysis uncovered key clinical determinants. Acknowledging limitations in cross-center generalizability, we propose the development of a multimodal diagnostic systems that combines CT imaging and radiomics, to be validated in multi-center prospective cohorts to facilitate clinical translation. This framework establishes a novel paradigm for early precision diagnosis of lung cancer.

Ensuring Fairness in Detecting Mild Cognitive Impairment with MRI.

Tong B, Edwards T, Yang S, Hou B, Tarzanagh DA, Urbanowicz RJ, Moore JH, Ritchie MD, Davatzikos C, Shen L

pubmed logopapersJan 1 2024
Machine learning (ML) algorithms play a crucial role in the early and accurate diagnosis of Alzheimer's Disease (AD), which is essential for effective treatment planning. However, existing methods are not well-suited for identifying Mild Cognitive Impairment (MCI), a critical transitional stage between normal aging and AD. This inadequacy is primarily due to label imbalance and bias from different sensitve attributes in MCI classification. To overcome these challenges, we have designed an end-to-end fairness-aware approach for label-imbalanced classification, tailored specifically for neuroimaging data. This method, built on the recently developed FACIMS framework, integrates into STREAMLINE, an automated ML environment. We evaluated our approach against nine other ML algorithms and found that it achieves comparable balanced accuracy to other methods while prioritizing fairness in classifications with five different sensitive attributes. This analysis contributes to the development of equitable and reliable ML diagnostics for MCI detection.

Enhancement of Fairness in AI for Chest X-ray Classification.

Jackson NJ, Yan C, Malin BA

pubmed logopapersJan 1 2024
The use of artificial intelligence (AI) in medicine has shown promise to improve the quality of healthcare decisions. However, AI can be biased in a manner that produces unfair predictions for certain demographic subgroups. In MIMIC-CXR, a publicly available dataset of over 300,000 chest X-ray images, diagnostic AI has been shown to have a higher false negative rate for racial minorities. We evaluated the capacity of synthetic data augmentation, oversampling, and demographic-based corrections to enhance the fairness of AI predictions. We show that adjusting unfair predictions for demographic attributes, such as race, is ineffective at improving fairness or predictive performance. However, using oversampling and synthetic data augmentation to modify disease prevalence reduced such disparities by 74.7% and 10.6%, respectively. Moreover, such fairness gains were accomplished without reduction in performance (95% CI AUC: [0.816, 0.820] versus [0.810, 0.819] versus [0.817, 0.821] for baseline, oversampling, and augmentation, respectively).
Page 107 of 1071070 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.