Sort by:
Page 104 of 1111106 results

Impact of spectrum bias on deep learning-based stroke MRI analysis.

Krag CH, Müller FC, Gandrup KL, Plesner LL, Sagar MV, Andersen MB, Nielsen M, Kruuse C, Boesen M

pubmed logopapersMay 8 2025
To evaluate spectrum bias in stroke MRI analysis by excluding cases with uncertain acute ischemic lesions (AIL) and examining patient, imaging, and lesion factors associated with these cases. This single-center retrospective observational study included adults with brain MRIs for suspected stroke between January 2020 and April 2022. Diagnostic uncertain AIL were identified through reader disagreement or low certainty grading by a radiology resident, a neuroradiologist, and the original radiology report consisting of various neuroradiologists. A commercially available deep learning tool analyzing brain MRIs for AIL was evaluated to assess the impact of excluding uncertain cases on diagnostic odds ratios. Patient-related, MRI acquisition-related, and lesion-related factors were analyzed using the Wilcoxon rank sum test, χ2 test, and multiple logistic regression. The study was approved by the National Committee on Health Research Ethics. In 989 patients (median age 73 (IQR: 59-80), 53% female), certain AIL were found in 374 (38%), uncertain AIL in 63 (6%), and no AIL in 552 (56%). Excluding uncertain cases led to a four-fold increase in the diagnostic odds ratio (from 68 to 278), while a simulated case-control design resulted in a six-fold increase compared to the full disease spectrum (from 68 to 431). Independent factors associated with uncertain AIL were MRI artifacts, smaller lesion size, older lesion age, and infratentorial location. Excluding uncertain cases leads to a four-fold overestimation of the diagnostic odds ratio. MRI artifacts, smaller lesion size, infratentorial location, and older lesion age are associated with uncertain AIL and should be accounted for in validation studies.

Machine learning model for diagnosing salivary gland adenoid cystic carcinoma based on clinical and ultrasound features.

Su HZ, Li ZY, Hong LC, Wu YH, Zhang F, Zhang ZB, Zhang XD

pubmed logopapersMay 8 2025
To develop and validate machine learning (ML) models for diagnosing salivary gland adenoid cystic carcinoma (ACC) in the salivary glands based on clinical and ultrasound features. A total of 365 patients with ACC or non-ACC of the salivary glands treated at two centers were enrolled in training cohort, internal and external validation cohorts. Synthetic minority oversampling technique was used to address the class imbalance. The least absolute shrinkage and selection operator (LASSO) regression identified optimal features, which were subsequently utilized to construct predictive models employing five ML algorithms. The performance of the models was evaluated across a comprehensive array of learning metrics, prominently the area under the receiver operating characteristic curve (AUC). Through LASSO regression analysis, six key features-sex, pain symptoms, number, cystic areas, rat tail sign, and polar vessel-were identified and subsequently utilized to develop five ML models. Among these models, the support vector machine (SVM) model demonstrated superior performance, achieving the highest AUCs of 0.899 and 0.913, accuracy of 90.54% and 91.53%, and F1 scores of 0.774 and 0.783 in both the internal and external validation cohorts, respectively. Decision curve analysis further revealed that the SVM model offered enhanced clinical utility compared to the other models. The ML model based on clinical and US features provide an accurate and noninvasive method for distinguishing ACC from non-ACC. This machine learning model, constructed based on clinical and ultrasound characteristics, serves as a valuable tool for the identification of salivary gland adenoid cystic carcinoma. Rat tail sign and polar vessel on US predict adenoid cystic carcinoma (ACC). Machine learning models based on clinical and US features can identify ACC. The support vector machine model performed robustly and accurately.

Predicting treatment response to systemic therapy in advanced gallbladder cancer using multiphase enhanced CT images.

Wu J, Zheng Z, Li J, Shen X, Huang B

pubmed logopapersMay 8 2025
Accurate estimation of treatment response can help clinicians identify patients who would potentially benefit from systemic therapy. This study aimed to develop and externally validate a model for predicting treatment response to systemic therapy in advanced gallbladder cancer (GBC). We recruited 399 eligible GBC patients across four institutions. Multivariable logistic regression analysis was performed to identify independent clinical factors related to therapeutic efficacy. This deep learning (DL) radiomics signature was developed for predicting treatment response using multiphase enhanced CT images. Then, the DL radiomic-clinical (DLRSC) model was built by combining the DL signature and significant clinical factors, and its predictive performance was evaluated using area under the curve (AUC). Gradient-weighted class activation mapping analysis was performed to help clinicians better understand the predictive results. Furthermore, patients were stratified into low- and high-score groups by the DLRSC model. The progression-free survival (PFS) and overall survival (OS) between the two different groups were compared. Multivariable analysis revealed that tumor size was a significant predictor of efficacy. The DLRSC model showed great predictive performance, with AUCs of 0.86 (95% CI, 0.82-0.89) and 0.84 (95% CI, 0.80-0.87) in the internal and external test datasets, respectively. This model showed great discrimination, calibration, and clinical utility. Moreover, Kaplan-Meier survival analysis revealed that low-score group patients who were insensitive to systemic therapy predicted by the DLRSC model had worse PFS and OS. The DLRSC model allows for predicting treatment response in advanced GBC patients receiving systemic therapy. The survival benefit provided by the DLRSC model was also assessed. Question No effective tools exist for identifying patients who would potentially benefit from systemic therapy in clinical practice. Findings Our combined model allows for predicting treatment response to systemic therapy in advanced gallbladder cancer. Clinical relevance With the help of this model, clinicians could inform patients of the risk of potential ineffective treatment. Such a strategy can reduce unnecessary adverse events and effectively help reallocate societal healthcare resources.

Construction of risk prediction model of sentinel lymph node metastasis in breast cancer patients based on machine learning algorithm.

Yang Q, Liu C, Wang Y, Dong G, Sun J

pubmed logopapersMay 8 2025
The aim of this study was to develop and validate a machine learning (ML) based prediction model for sentinel lymph node metastasis in breast cancer to identify patients with a high risk of sentinel lymph node metastasis. In this machine learning study, we retrospectively collected 225 female breast cancer patients who underwent sentinel lymph node biopsy (SLNB). Feature screening was performed using the logistic regression analysis. Subsequently, five ML algorithms, namely LOGIT, LASSO, XGBOOST, RANDOM FOREST model and GBM model were employed to train and develop an ML model. In addition, model interpretation was performed by the Shapley Additive Explanations (SHAP) analysis to clarify the importance of each feature of the model and its decision basis. Combined univariate and multivariate logistic regression analysis, identified Multifocal, LVI, Maximum Diameter, Shape US, Maximum Cortical Thickness as significant predictors. We than successfully leveraged machine learning algorithms, particularly the RANDOM FOREST model, to develop a predictive model for sentinel lymph node metastasis in breast cancer. Finally, the SHAP method identified Maximum Diameter and Maximum Cortical Thickness as the primary decision factors influencing the ML model's predictions. With the integration of pathological and imaging characteristics, ML algorithm can accurately predict sentinel lymph node metastasis in breast cancer patients. The RANDOM FOREST model showed ideal performance. With the incorporation of these models in the clinic, can helpful for clinicians to identify patients at risk of sentinel lymph node metastasis of breast cancer and make more reasonable treatment decisions.

Predicting the efficacy of bevacizumab on peritumoral edema based on imaging features and machine learning.

Bai X, Feng M, Ma W, Wang S

pubmed logopapersMay 8 2025
This study proposes a novel approach to predict the efficacy of bevacizumab (BEV) in treating peritumoral edema in metastatic brain tumor patients by integrating advanced machine learning (ML) techniques with comprehensive imaging and clinical data. A retrospective analysis was performed on 300 patients who received BEV treatment from September 2013 to January 2024. The dataset incorporated 13 predictive features: 8 clinical variables and 5 radiological variables. The dataset was divided into a training set (70%) and a test set (30%) using stratified sampling. Data preprocessing was carried out through methods such as handling missing values with the MICE method, detecting and adjusting outliers, and feature scaling. Four algorithms, namely Random Forest (RF), Logistic Regression, Gradient Boosting Tree, and Naive Bayes, were selected to construct binary classification models. A tenfold cross-validation strategy was implemented during training, and techniques like regularization, hyperparameter optimization, and oversampling were used to mitigate overfitting. The RF model demonstrated superior performance, achieving an accuracy of 0.89, a precision of 0.94, F1-score of 0.92, with both AUC-ROC and AUC-PR values reaching 0.91. Feature importance analysis consistently identified edema volume as the most significant predictor, followed by edema index, patient age, and tumor volume. Traditional multivariate logistic regression corroborated these findings, confirming that edema volume and edema index were independent predictors (p < 0.01). Our results highlight the potential of ML-driven predictive models in optimizing BEV treatment selection, reducing unnecessary treatment risks, and improving clinical decision-making in neuro-oncology.

Systematic review and epistemic meta-analysis to advance binomial AI-radiomics integration for predicting high-grade glioma progression and enhancing patient management.

Chilaca-Rosas MF, Contreras-Aguilar MT, Pallach-Loose F, Altamirano-Bustamante NF, Salazar-Calderon DR, Revilla-Monsalve C, Heredia-Gutiérrez JC, Conde-Castro B, Medrano-Guzmán R, Altamirano-Bustamante MM

pubmed logopapersMay 8 2025
High-grade gliomas, particularly glioblastoma (MeSH:Glioblastoma), are among the most aggressive and lethal central nervous system tumors, necessitating advanced diagnostic and prognostic strategies. This systematic review and epistemic meta-analysis explore the integration of Artificial Intelligence (AI) and Radiomics Inter-field (AIRI) to enhance predictive modeling for tumor progression. A comprehensive literature search identified 19 high-quality studies, which were analyzed to evaluate radiomic features and machine learning models in predicting overall survival (OS) and progression-free survival (PFS). Key findings highlight the predictive strength of specific MRI-derived radiomic features such as log-filter and Gabor textures and the superior performance of Support Vector Machines (SVM) and Random Forest (RF) models, achieving high accuracy and AUC scores (e.g., 98% AUC and 98.7% accuracy for OS). This research demonstrates the current state of the AIRI field and shows that current articles report their results with different performance indicators and metrics, making outcomes heterogenous and hard to integrate knowledge. Additionally, it was explored that today some articles use biased methodologies. This study proposes a structured AIRI development roadmap and guidelines, to avoid bias and make results comparable, emphasizing standardized feature extraction and AI model training to improve reproducibility across clinical settings. By advancing precision medicine, AIRI integration has the potential to refine clinical decision-making and enhance patient outcomes.

Hierarchical diagnosis of breast phyllodes tumors enabled by deep learning of ultrasound images: a retrospective multi-center study.

Yan Y, Liu Y, Wang Y, Jiang T, Xie J, Zhou Y, Liu X, Yan M, Zheng Q, Xu H, Chen J, Sui L, Chen C, Ru R, Wang K, Zhao A, Li S, Zhu Y, Zhang Y, Wang VY, Xu D

pubmed logopapersMay 8 2025
Phyllodes tumors (PTs) are rare breast tumors with high recurrence rates, current methods relying on post-resection pathology often delay detection and require further surgery. We propose a deep-learning-based Phyllodes Tumors Hierarchical Diagnosis Model (PTs-HDM) for preoperative identification and grading. Ultrasound images from five hospitals were retrospectively collected, with all patients having undergone surgical pathological confirmation of either PTs or fibroadenomas (FAs). PTs-HDM follows a two-stage classification: first distinguishing PTs from FAs, then grading PTs into benign or borderline/malignant. Model performance metrics including AUC and accuracy were quantitatively evaluated. A comparative analysis was conducted between the algorithm's diagnostic capabilities and those of radiologists with varying clinical experience within an external validation cohort. Through the provision of PTs-HDM's automated classification outputs and associated thermal activation mapping guidance, we systematically assessed the enhancement in radiologists' diagnostic concordance and classification accuracy. A total of 712 patients were included. On the external test set, PTs-HDM achieved an AUC of 0.883, accuracy of 87.3% for PT vs. FA classification. Subgroup analysis showed high accuracy for tumors < 2 cm (90.9%). In hierarchical classification, the model obtained an AUC of 0.856 and accuracy of 80.9%. Radiologists' performance improved with PTs-HDM assistance, with binary classification accuracy increasing from 82.7%, 67.7%, and 64.2-87.6%, 76.6%, and 82.1% for senior, attending, and resident radiologists, respectively. Their hierarchical classification AUCs improved from 0.566 to 0.827 to 0.725-0.837. PTs-HDM also enhanced inter-radiologist consistency, increasing Kappa values from - 0.05 to 0.41 to 0.12 to 0.65, and the intraclass correlation coefficient from 0.19 to 0.45. PTs-HDM shows strong diagnostic performance, especially for small lesions, and improves radiologists' accuracy across all experience levels, bridging diagnostic gaps and providing reliable support for PTs' hierarchical diagnosis.

Are Diffusion Models Effective Good Feature Extractors for MRI Discriminative Tasks?

Li B, Sun Z, Li C, Kamagata K, Andica C, Uchida W, Takabayashi K, Guo S, Zou R, Aoki S, Tanaka T, Zhao Q

pubmed logopapersMay 8 2025
Diffusion models (DMs) excel in pixel-level and spatial tasks and are proven feature extractors for 2D image discriminative tasks when pretrained. However, their capabilities in 3D MRI discriminative tasks remain largely untapped. This study seeks to assess the effectiveness of DMs in this underexplored area. We use 59830 T1-weighted MR images (T1WIs) from the extensive, yet unlabeled, UK Biobank dataset. Additionally, we apply 369 T1WIs from the BraTS2020 dataset specifically for brain tumor classification, and 421 T1WIs from the ADNI1 dataset for the diagnosis of Alzheimer's disease. Firstly, a high-performing denoising diffusion probabilistic model (DDPM) with a U-Net backbone is pretrained on the UK Biobank, then fine-tuned on the BraTS2020 and ADNI1 datasets. Afterward, we assess its feature representation capabilities for discriminative tasks using linear probes. Finally, we accordingly introduce a novel fusion module, named CATS, that enhances the U-Net representations, thereby improving performance on discriminative tasks. Our DDPM produces synthetic images of high quality that match the distribution of the raw datasets. Subsequent analysis reveals that DDPM features extracted from middle blocks and smaller timesteps are of high quality. Leveraging these features, the CATS module, with just 1.7M additional parameters, achieved average classification scores of 0.7704 and 0.9217 on the BraTS2020 and ADNI1 datasets, demonstrating competitive performance with that of the representations extracted from the transferred DDPM model, as well as the 33.23M parameters ResNet18 trained from scratch. We have found that pretraining a DM on a large-scale dataset and then fine-tuning it on limited data from discriminative datasets is a viable approach for MRI data. With these well-performing DMs, we show that they excel not just in generation tasks but also as feature extractors when combined with our proposed CATS module.

Multimodal Integration of Plasma, MRI, and Genetic Risk for Cerebral Amyloid Prediction

yichen, w., Chen, H., yuxin, C., Yuyan, C., shiyun, Z., Kexin, W., Yidong, J., Tianyu, B., Yanxi, H., MingKai, Z., Chengxiang, Y., Guozheng, F., Weijie, H., Ni, S., Ying, H.

medrxiv logopreprintMay 8 2025
Accurate estimation of cerebral amyloid-{beta} (A{beta}) burden is critical for early detection and risk stratification in Alzheimers disease (AD). While A{beta} positron emission tomography (PET) remains the gold standard, its high cost, invasive nature and limited accessibility hinder broad clinical application. Blood-based biomarkers offer a non-invasive and cost-effective alternative, but their standalone predictive accuracy remains limited due to biological heterogeneity and limited reflection of central nervous system pathology. Here, we present a high-precision, multimodal prediction machine learning model that integrates plasma biomarkers, brain structural magnetic resonance imaging (sMRI) features, diffusion tensor imaging (DTI)-derived structural connectomes, and genetic risk profiles. The model was trained on 150 participants from the Alzheimers Disease Neuroimaging Initiative (ADNI) and externally validated on 111 participants from the SILCODE cohort. Multimodal integration substantially improved A{beta} prediction, with R{superscript 2} increasing from 0.515 using plasma biomarkers alone to 0.637 when adding imaging and genetic features. These results highlight the potential of this multimodal machine learning approach as a scalable, non-invasive, and economically viable alternative to PET for estimating A{beta} burden.

Application of Artificial Intelligence to Deliver Healthcare From the Eye.

Weinreb RN, Lee AY, Baxter SL, Lee RWJ, Leng T, McConnell MV, El-Nimri NW, Rhew DC

pubmed logopapersMay 8 2025
Oculomics is the science of analyzing ocular data to identify, diagnose, and manage systemic disease. This article focuses on prescreening, its use with retinal images analyzed by artificial intelligence (AI), to identify ocular or systemic disease or potential disease in asymptomatic individuals. The implementation of prescreening in a coordinated care system, defined as Healthcare From the Eye prescreening, has the potential to improve access, affordability, equity, quality, and safety of health care on a global level. Stakeholders include physicians, payers, policymakers, regulators and representatives from industry, government, and data privacy sectors. The combination of AI analysis of ocular data with automated technologies that capture images during routine eye examinations enables prescreening of large populations for chronic disease. Retinal images can be acquired during either a routine eye examination or in settings outside of eye care with readily accessible, safe, quick, and noninvasive retinal imaging devices. The outcome of such an examination can then be digitally communicated across relevant stakeholders in a coordinated fashion to direct a patient to screening and monitoring services. Such an approach offers the opportunity to transform health care delivery and improve early disease detection, improve access to care, enhance equity especially in rural and underserved communities, and reduce costs. With effective implementation and collaboration among key stakeholders, this approach has the potential to contribute to an equitable and effective health care system.
Page 104 of 1111106 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.