Sort by:
Page 104 of 1411402 results

A two-step automatic identification of contrast phases for abdominal CT images based on residual networks.

Liu Q, Jiang J, Wu K, Zhang Y, Sun N, Luo J, Ba T, Lv A, Liu C, Yin Y, Yang Z, Xu H

pubmed logopapersJun 27 2025
To develop a deep learning model based on Residual Networks (ResNet) for the automated and accurate identification of contrast phases in abdominal CT images. A dataset of 1175 abdominal contrast-enhanced CT scans was retrospectively collected for the model development, and another independent dataset of 215 scans from five hospitals was collected for external testing. Each contrast phase was independently annotated by two radiologists. A ResNet-based model was developed to automatically classify phases into the early arterial phase (EAP) or late arterial phase (LAP), portal venous phase (PVP), and delayed phase (DP). Strategy A identified EAP or LAP, PVP, and DP in one step. Strategy B used a two-step approach: first classifying images as arterial phase (AP), PVP, and DP, then further classifying AP images into EAP or LAP. Model performance and strategy comparison were evaluated. In the internal test set, the overall accuracy of the two-step strategy was 98.3% (283/288; p < 0.001), significantly higher than that of the one-step strategy (91.7%, 264/288; p < 0.001). In the external test set, the two-step model achieved an overall accuracy of 99.1% (639/645), with sensitivities of 95.1% (EAP), 99.4% (LAP), 99.5% (PVP), and 99.5% (DP). The proposed two-step ResNet-based model provides highly accurate and robust identification of contrast phases in abdominal CT images, outperforming the conventional one-step strategy. Automated and accurate identification of contrast phases in abdominal CT images provides a robust tool for improving image quality control and establishes a strong foundation for AI-driven applications, particularly those leveraging contrast-enhanced abdominal imaging data. Accurate identification of contrast phases is crucial in abdominal CT imaging. The two-step ResNet-based model achieved superior accuracy across internal and external datasets. Automated phase classification strengthens imaging quality control and supports precision AI applications.

<sup>Advanced glaucoma disease segmentation and classification with grey wolf optimized U</sup> <sup>-Net++ and capsule networks</sup>.

Govindharaj I, Deva Priya W, Soujanya KLS, Senthilkumar KP, Shantha Shalini K, Ravichandran S

pubmed logopapersJun 27 2025
Early detection of glaucoma represents a vital factor in securing vision while the disease retains its position as one of the central causes of blindness worldwide. The current glaucoma screening strategies with expert interpretation depend on complex and time-consuming procedures which slow down both diagnosis processes and intervention timing. This research adopts a complex automated glaucoma diagnostic system that combines optimized segmentation solutions together with classification platforms. The proposed segmentation approach implements an enhanced version of U-Net++ using dynamic parameter control provided by GWO to segment optic disc and cup regions in retinal fundus images. Through the implementation of GWO the algorithm uses wolf-pack hunting strategies to adjust parameters dynamically which enables it to locate diverse textural patterns inside images. The system uses a CapsNet capsule network for classification because it maintains visual spatial organization to detect glaucoma-related patterns precisely. The developed system secures an evaluation accuracy of 95.1% in segmentation and classification tasks better than typical approaches. The automated system eliminates and enhances clinical diagnostic speed as well as diagnostic precision. The tool stands out because of its supreme detection accuracy and reliability thus making it an essential clinical early-stage glaucoma diagnostic system and a scalable healthcare deployment solution. To develop an advanced automated glaucoma diagnostic system by integrating an optimized U-Net++ segmentation model with a Capsule Network (CapsNet) classifier, enhanced through Grey Wolf Optimization Algorithm (GWOA), for precise segmentation of optic disc and cup regions and accurate glaucoma classification from retinal fundus images. This study proposes a two-phase computer-assisted diagnosis (CAD) framework. In the segmentation phase, an enhanced U-Net++ model, optimized by GWOA, is employed to accurately delineate the optic disc and cup regions in fundus images. The optimization dynamically tunes hyperparameters based on grey wolf hunting behavior for improved segmentation precision. In the classification phase, a CapsNet architecture is used to maintain spatial hierarchies and effectively classify images as glaucomatous or normal based on segmented outputs. The performance of the proposed model was validated using the ORIGA retinal fundus image dataset, and evaluated against conventional approaches. The proposed GWOA-UNet++ and CapsNet framework achieved a segmentation and classification accuracy of 95.1%, outperforming existing benchmark models such as MTA-CS, ResFPN-Net, DAGCN, MRSNet and AGCT. The model demonstrated robustness against image irregularities, including variations in optic disc size and fundus image quality, and showed superior performance across accuracy, sensitivity, specificity, precision, and F1-score metrics. The developed automated glaucoma detection system exhibits enhanced diagnostic accuracy, efficiency, and reliability, offering significant potential for early-stage glaucoma detection and clinical decision support. Future work will involve large-scale multi-ethnic dataset validation, integration with clinical workflows, and deployment as a mobile or cloud-based screening tool.

High Resolution Isotropic 3D Cine imaging with Automated Segmentation using Concatenated 2D Real-time Imaging and Deep Learning

Mark Wrobel, Michele Pascale, Tina Yao, Ruaraidh Campbell, Elena Milano, Michael Quail, Jennifer Steeden, Vivek Muthurangu

arxiv logopreprintJun 27 2025
Background: Conventional cardiovascular magnetic resonance (CMR) in paediatric and congenital heart disease uses 2D, breath-hold, balanced steady state free precession (bSSFP) cine imaging for assessment of function and cardiac-gated, respiratory-navigated, static 3D bSSFP whole-heart imaging for anatomical assessment. Our aim is to concatenate a stack 2D free-breathing real-time cines and use Deep Learning (DL) to create an isotropic a fully segmented 3D cine dataset from these images. Methods: Four DL models were trained on open-source data that performed: a) Interslice contrast correction; b) Interslice respiratory motion correction; c) Super-resolution (slice direction); and d) Segmentation of right and left atria and ventricles (RA, LA, RV, and LV), thoracic aorta (Ao) and pulmonary arteries (PA). In 10 patients undergoing routine cardiovascular examination, our method was validated on prospectively acquired sagittal stacks of real-time cine images. Quantitative metrics (ventricular volumes and vessel diameters) and image quality of the 3D cines were compared to conventional breath hold cine and whole heart imaging. Results: All real-time data were successfully transformed into 3D cines with a total post-processing time of <1 min in all cases. There were no significant biases in any LV or RV metrics with reasonable limits of agreement and correlation. There is also reasonable agreement for all vessel diameters, although there was a small but significant overestimation of RPA diameter. Conclusion: We have demonstrated the potential of creating a 3D-cine data from concatenated 2D real-time cine images using a series of DL models. Our method has short acquisition and reconstruction times with fully segmented data being available within 2 minutes. The good agreement with conventional imaging suggests that our method could help to significantly speed up CMR in clinical practice.

Predicting brain metastases in EGFR-positive lung adenocarcinoma patients using pre-treatment CT lung imaging data.

He X, Guan C, Chen T, Wu H, Su L, Zhao M, Guo L

pubmed logopapersJun 26 2025
This study aims to establish a dual-feature fusion model integrating radiomic features with deep learning features, utilizing single-modality pre-treatment lung CT image data to achieve early warning of brain metastasis (BM) risk within 2 years in EGFR-positive lung adenocarcinoma. After rigorous screening of 362 EGFR-positive lung adenocarcinoma patients with pre-treatment lung CT images, 173 eligible participants were ultimately enrolled in this study, including 93 patients with BM and 80 without BM. Radiomic features were extracted from manually segmented lung nodule regions, and a selection of features was used to develop radiomics models. For deep learning, ROI-level CT images were processed using several deep learning networks, including the novel vision mamba, which was applied for the first time in this context. A feature-level fusion model was developed by combining radiomic and deep learning features. Model performance was assessed using receiver operating characteristic (ROC) curves and decision curve analysis (DCA), with statistical comparisons of area under the curve (AUC) values using the DeLong test. Among the models evaluated, the fused vision mamba model demonstrated the best classification performance, achieving an AUC of 0.86 (95% CI: 0.82-0.90), with a recall of 0.88, F1-score of 0.70, and accuracy of 0.76. This fusion model outperformed both radiomics-only and deep learning-only models, highlighting its superior predictive accuracy for early BM risk detection in EGFR-positive lung adenocarcinoma patients. The fused vision mamba model, utilizing single CT imaging data, significantly enhances the prediction of brain metastasis within two years in EGFR-positive lung adenocarcinoma patients. This novel approach, combining radiomic and deep learning features, offers promising clinical value for early detection and personalized treatment.

Robust Deep Learning for Myocardial Scar Segmentation in Cardiac MRI with Noisy Labels

Aida Moafi, Danial Moafi, Evgeny M. Mirkes, Gerry P. McCann, Abbas S. Alatrany, Jayanth R. Arnold, Mostafa Mehdipour Ghazi

arxiv logopreprintJun 26 2025
The accurate segmentation of myocardial scars from cardiac MRI is essential for clinical assessment and treatment planning. In this study, we propose a robust deep-learning pipeline for fully automated myocardial scar detection and segmentation by fine-tuning state-of-the-art models. The method explicitly addresses challenges of label noise from semi-automatic annotations, data heterogeneity, and class imbalance through the use of Kullback-Leibler loss and extensive data augmentation. We evaluate the model's performance on both acute and chronic cases and demonstrate its ability to produce accurate and smooth segmentations despite noisy labels. In particular, our approach outperforms state-of-the-art models like nnU-Net and shows strong generalizability in an out-of-distribution test set, highlighting its robustness across various imaging conditions and clinical tasks. These results establish a reliable foundation for automated myocardial scar quantification and support the broader clinical adoption of deep learning in cardiac imaging.

Enhancing cancer diagnostics through a novel deep learning-based semantic segmentation algorithm: A low-cost, high-speed, and accurate approach.

Benabbou T, Sahel A, Badri A, Mourabit IE

pubmed logopapersJun 26 2025
Deep learning-based semantic segmentation approaches provide an efficient and automated means for cancer diagnosis and monitoring, which is important in clinical applications. However, implementing these approaches outside the experimental environment and using them in real-world applications requires powerful and adequate hardware resources, which are not available in most hospitals, especially in low- and middle-income countries. Consequently, clinical settings will never use most of these algorithms, or at best, their adoption will be relatively limited. To address these issues, some approaches that reduce computational costs were proposed, but they performed poorly and failed to produce satisfactory results. Therefore, finding a method that overcomes these limitations without losing performance is highly challenging. To face this challenge, our study proposes a novel, optimal convolutional neural network-based approach for medical image segmentation that consists of multiple synthesis and analysis paths connected through a series of long skip connections. The design leverages multi-scale convolution, multi-scale feature extraction, downsampling strategies, and feature map fusion methods, all of which have proven effective in enhancing performance. This framework was extensively evaluated against current state-of-the-art architectures on various medical image segmentation tasks, including lung tumors, spleen, and pancreatic tumors. The results of these experiments conclusively demonstrate the efficacy of the proposed approach in outperforming existing state-of-the-art methods across multiple evaluation metrics. This superiority is further enhanced by the framework's ability to minimize the computational complexity and decrease the number of parameters required, resulting in greater segmentation accuracy, faster processing, and better implementation efficiency.

Morphology-based radiological-histological correlation on ultra-high-resolution energy-integrating detector CT using cadaveric human lungs: nodule and airway analysis.

Hata A, Yanagawa M, Ninomiya K, Kikuchi N, Kurashige M, Nishigaki D, Doi S, Yamagata K, Yoshida Y, Ogawa R, Tokuda Y, Morii E, Tomiyama N

pubmed logopapersJun 26 2025
To evaluate the depiction capability of fine lung nodules and airways using high-resolution settings on ultra-high-resolution energy-integrating detector CT (UHR-CT), incorporating large matrix sizes, thin-slice thickness, and iterative reconstruction (IR)/deep-learning reconstruction (DLR), using cadaveric human lungs and corresponding histological images. Images of 20 lungs were acquired using conventional CT (CCT), UHR-CT, and photon-counting detector CT (PCD-CT). CCT images were reconstructed with a 512 matrix and IR (CCT-512-IR). UHR-CT images were reconstructed with four settings by varying the matrix size and the reconstruction method: UHR-512-IR, UHR-1024-IR, UHR-2048-IR, and UHR-1024-DLR. Two imaging settings of PCD-CT were used: PCD-512-IR and PCD-1024-IR. CT images were visually evaluated and compared with histology. Overall, 6769 nodules (median: 1321 µm) and 92 airways (median: 851 µm) were evaluated. For nodules, UHR-2048-IR outperformed CCT-512-IR, UHR-512-IR, and UHR-1024-IR (p < 0.001). UHR-1024-DLR showed no significant difference from UHR-2048-IR in the overall nodule score after Bonferroni correction (uncorrected p = 0.043); however, for nodules > 1000 μm, UHR-2048-IR demonstrated significantly better scores than UHR-1024-DLR (p = 0.003). For airways, UHR-1024-IR and UHR-512-IR showed significant differences (p < 0.001), with no notable differences among UHR-1024-IR, UHR-2048-IR, and UHR-1024-DLR. UHR-2048-IR detected nodules and airways with median diameters of 604 µm and 699 µm, respectively. No significant difference was observed between UHR-512-IR and PCD-512-IR (p > 0.1). PCD-1024-IR outperformed UHR-CTs for nodules > 1000 μm (p ≤ 0.001), while UHR-1024-DLR outperformed PCD-1024-IR for airways > 1000 μm (p = 0.005). UHR-2048-IR demonstrated the highest scores among the evaluated EID-CT images. UHR-CT showed potential for detecting submillimeter nodules and airways. With the 512 matrix, UHR-CT demonstrated performance comparable to PCD-CT. Question There are scarce data evaluating the depiction capabilities of ultra-high-resolution energy-integrating detector CT (UHR-CT) for fine structures, nor any comparisons with photon-counting detector CT (PCD-CT). Findings UHR-CT depicted nodules and airways with median diameters of 604 µm and 699 µm, showing no significant difference from PCD-CT with the 512 matrix. Clinical relevance High-resolution imaging is crucial for lung diagnosis. UHR-CT has the potential to contribute to pulmonary nodule diagnosis and airway disease evaluation by detecting fine opacities and airways.

Constructing high-quality enhanced 4D-MRI with personalized modeling for liver cancer radiotherapy.

Yao Y, Chen B, Wang K, Cao Y, Zuo L, Zhang K, Chen X, Kuo M, Dai J

pubmed logopapersJun 26 2025
For magnetic resonance imaging (MRI), a short acquisition time and good image quality are incompatible. Thus, reconstructing time-resolved volumetric MRI (4D-MRI) to delineate and monitor thoracic and upper abdominal tumor movements is a challenge. Existing MRI sequences have limited applicability to 4D-MRI. A method is proposed for reconstructing high-quality personalized enhanced 4D-MR images. Low-quality 4D-MR images are scanned followed by deep learning-based personalization to generate high-quality 4D-MR images. High-speed multiphase 3D fast spoiled gradient recalled echo (FSPGR) sequences were utilized to generate low-quality enhanced free-breathing 4D-MR images and paired low-/high-quality breath-holding 4D-MR images for 58 liver cancer patients. Then, a personalized model guided by the paired breath-holding 4D-MR images was developed for each patient to cope with patient heterogeneity. The 4D-MR images generated by the personalized model were of much higher quality compared with the low-quality 4D-MRI images obtained by conventional scanning as demonstrated by significant improvements in the peak signal-to-noise ratio, structural similarity, normalized root mean square error, and cumulative probability of blur detection. The introduction of individualized information helped the personalized model demonstrate a statistically significant improvement compared to the general model (p < 0.001). The proposed method can be used to quickly reconstruct high-quality 4D-MR images and is potentially applicable to radiotherapy for liver cancer.

Exploring the Design Space of 3D MLLMs for CT Report Generation

Mohammed Baharoon, Jun Ma, Congyu Fang, Augustin Toma, Bo Wang

arxiv logopreprintJun 26 2025
Multimodal Large Language Models (MLLMs) have emerged as a promising way to automate Radiology Report Generation (RRG). In this work, we systematically investigate the design space of 3D MLLMs, including visual input representation, projectors, Large Language Models (LLMs), and fine-tuning techniques for 3D CT report generation. We also introduce two knowledge-based report augmentation methods that improve performance on the GREEN score by up to 10\%, achieving the 2nd place on the MICCAI 2024 AMOS-MM challenge. Our results on the 1,687 cases from the AMOS-MM dataset show that RRG is largely independent of the size of LLM under the same training protocol. We also show that larger volume size does not always improve performance if the original ViT was pre-trained on a smaller volume size. Lastly, we show that using a segmentation mask along with the CT volume improves performance. The code is publicly available at https://github.com/bowang-lab/AMOS-MM-Solution

The Current State of Artificial Intelligence on Detecting Pulmonary Embolism via Computerised Tomography Pulmonary Angiogram: A Systematic Review.

Hassan MSTA, Elhotiby MAM, Shah V, Rocha H, Rad AA, Miller G, Malawana J

pubmed logopapersJun 25 2025
<b>Aims/Background</b> Pulmonary embolism (PE) is a life-threatening condition with significant diagnostic challenges due to high rates of missed or delayed detection. Computed tomography pulmonary angiography (CTPA) is the current standard for diagnosing PE, however, demand for imaging places strain on healthcare systems and increases error rates. This systematic review aims to assess the diagnostic accuracy and clinical applicability of artificial intelligence (AI)-based models for PE detection on CTPA, exploring their potential to enhance diagnostic reliability and efficiency across clinical settings. <b>Methods</b> A systematic review was conducted in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Excerpta Medica Database (EMBASE), Medical Literature Analysis and Retrieval System Online (MEDLINE), Cochrane, PubMed, and Google Scholar were searched for original articles from inception to September 2024. Articles were included if they reported successful AI integration, whether partial or full, alongside CTPA scans for PE detection in patients. <b>Results</b> The literature search identified 919 articles, with 745 remaining after duplicate removal. Following rigorous screening and appraisal aligned with inclusion and exclusion criteria, 12 studies were included in the final analysis. A total of three primary AI modalities emerged: convolutional neural networks (CNNs), segmentation models, and natural language processing (NLP), collectively used in the analysis of 341,112 radiographic images. CNNs were the most frequently applied modality in this review. Models such as AdaBoost and EmbNet have demonstrated high sensitivity, with EmbNet achieving 88-90.9% per scan and reducing false positives to 0.45 per scan. <b>Conclusion</b> AI shows significant promise as a diagnostic tool for identifying PE on CTPA scans, particularly when combined with other forms of clinical data. However, challenges remain, including ensuring generalisability, addressing potential bias, and conducting rigorous external validation. Variability in study methodologies and the lack of standardised reporting of key metrics complicate comparisons. Future research must focus on refining models, improving peripheral emboli detection, and validating performance across diverse settings to realise AI's potential fully.
Page 104 of 1411402 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.