Sort by:
Page 103 of 1191186 results

MRI-based habitat analysis for Intratumoral heterogeneity quantification combined with deep learning for HER2 status prediction in breast cancer.

Li QY, Liang Y, Zhang L, Li JH, Wang BJ, Wang CF

pubmed logopapersMay 23 2025
Human epidermal growth factor receptor 2 (HER2) is a crucial determinant of breast cancer prognosis and treatment options. The study aimed to establish an MRI-based habitat model to quantify intratumoral heterogeneity (ITH) and evaluate its potential in predicting HER2 expression status. Data from 340 patients with pathologically confirmed invasive breast cancer were retrospectively analyzed. Two tasks were designed for this study: Task 1 distinguished between HER2-positive and HER2-negative breast cancer. Task 2 distinguished between HER2-low and HER2-zero breast cancer. We developed the ITH, deep learning (DL), and radiomics signatures based on the features extracted from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Clinical independent predictors were determined by multivariable logistic regression. Finally, a combined model was constructed by integrating the clinical independent predictors, ITH signature, and DL signature. The area under the receiver operating characteristic curve (AUC) served as the standard for assessing the performance of models. In task 1, the ITH signature performed well in the training set (AUC = 0.855) and the validation set (AUC = 0.842). In task 2, the AUCs of the ITH signature were 0.844 and 0.840, respectively, which still showed good prediction performance. In the validation sets of both tasks, the combined model exhibited the best prediction performance, with AUCs of 0.912 and 0.917 respectively, making it the optimal model. A combined model integrating clinical independent predictors, ITH signature, and DL signature can predict HER2 expression status preoperatively and noninvasively.

Highlights of the Society for Cardiovascular Magnetic Resonance (SCMR) 2025 Conference: leading the way to accessible, efficient and sustainable CMR.

Prieto C, Allen BD, Azevedo CF, Lima BB, Lam CZ, Mills R, Huisman M, Gonzales RA, Weingärtner S, Christodoulou AG, Rochitte C, Markl M

pubmed logopapersMay 23 2025
The 28th Annual Scientific Sessions of the Society for Cardiovascular Magnetic Resonance (SCMR) took place from January 29 to February 1, 2025, in Washington, D.C. SCMR 2025 brought together a diverse group of 1714 cardiologists, radiologists, scientists, and technologists from more than 80 countries to discuss emerging trends and the latest developments in cardiovascular magnetic resonance (CMR). The conference centered on the theme "Leading the Way to Accessible, Sustainable, and Efficient CMR," highlighting innovations aimed at making CMR more clinically efficient, widely accessible, and environmentally sustainable. The program featured 728 abstracts and case presentations with an acceptance rate of 86% (728/849), including Early Career Award abstracts, oral abstracts, oral cases and rapid-fire sessions, covering a broad range of CMR topics. It also offered engaging invited lectures across eight main parallel tracks and included four plenary sessions, two gold medalists, and one keynote speaker, with a total of 826 faculty participating. Focused sessions on accessibility, efficiency, and sustainability provided a platform for discussing current challenges and exploring future directions, while the newly introduced CMR Innovations Track showcased innovative session formats and fostered greater collaboration between researchers, clinicians, and industry. For the first time, SCMR 2025 also offered the opportunity for attendees to obtain CMR Level 1 Training Verification, integrated into the program. Additionally, expert case reading sessions and hands-on interactive workshops allowed participants to engage with real-world clinical scenarios and deepen their understanding through practical experience. Key highlights included plenary sessions on a variety of important topics, such as expanding boundaries, health equity, women's cardiovascular disease and a patient-clinician testimonial that emphasized the profound value of patient-centered research and collaboration. The scientific sessions covered a wide range of topics, from clinical applications in cardiomyopathies, congenital heart disease, and vascular imaging to women's heart health and environmental sustainability. Technical topics included novel reconstruction, motion correction, quantitative CMR, contrast agents, novel field strengths, and artificial intelligence applications, among many others. This paper summarizes the key themes and discussions from SCMR 2025, highlighting the collaborative efforts that are driving the future of CMR and underscoring the Society's unwavering commitment to research, education, and clinical excellence.

Renal Transplant Survival Prediction From Unsupervised Deep Learning-Based Radiomics on Early Dynamic Contrast-Enhanced MRI.

Milecki L, Bodard S, Kalogeiton V, Poinard F, Tissier AM, Boudhabhay I, Correas JM, Anglicheau D, Vakalopoulou M, Timsit MO

pubmed logopapersMay 23 2025
End-stage renal disease is characterized by an irreversible decline in kidney function. Despite a risk of chronic dysfunction of the transplanted kidney, renal transplantation is considered the most effective solution among available treatment options. Clinical attributes of graft survival prediction, such as allocation variables or results of pathological examinations, have been widely studied. Nevertheless, medical imaging is clinically used only to assess current transplant status. This study investigated the use of unsupervised deep learning-based algorithms to identify rich radiomic features that may be linked to graft survival from early dynamic contrast-enhanced magnetic resonance imaging data of renal transplants. A retrospective cohort of 108 transplanted patients (mean age 50 +/- 15, 67 men) undergoing systematic magnetic resonance imaging follow-up examinations (2013 to 2015) was used to train deep convolutional neural network models based on an unsupervised contrastive learning approach. 5-year graft survival analysis was performed from the obtained artificial intelligence radiomics features using penalized Cox models and Kaplan-Meier estimates. Using a validation set of 48 patients (mean age 54 +/- 13, 30 men) having 1-month post-transplantation magnetic resonance imaging examinations, the proposed approach demonstrated promising 5-year graft survival capability with a 72.7% concordance index from the artificial intelligence radiomics features. Unsupervised clustering of these radiomics features enabled statistically significant stratification of patients (p=0.029). This proof-of-concept study exposed the promising capability of artificial intelligence algorithms to extract relevant radiomics features that enable renal transplant survival prediction. Further studies are needed to demonstrate the robustness of this technique, and to identify appropriate procedures for integration of such an approach into multimodal and clinical settings.

Radiomics-Based Early Triage of Prostate Cancer: A Multicenter Study from the CHAIMELEON Project

Vraka, A., Marfil-Trujillo, M., Ribas-Despuig, G., Flor-Arnal, S., Cerda-Alberich, L., Jimenez-Gomez, P., Jimenez-Pastor, A., Marti-Bonmati, L.

medrxiv logopreprintMay 22 2025
Prostate cancer (PCa) is the most commonly diagnosed malignancy in men worldwide. Accurate triage of patients based on tumor aggressiveness and staging is critical for selecting appropriate management pathways. While magnetic resonance imaging (MRI) has become a mainstay in PCa diagnosis, most predictive models rely on multiparametric imaging or invasive inputs, limiting generalizability in real-world clinical settings. This study aimed to develop and validate machine learning (ML) models using radiomic features extracted from T2-weighted MRI--alone and in combination with clinical variables--to predict ISUP grade (tumor aggressiveness), lymph node involvement (cN) and distant metastasis (cM). A retrospective multicenter cohort from three European sites in the Chaimeleon project was analyzed. Radiomic features were extracted from prostate zone segmentations and lesion masks, following standardized preprocessing and ComBat harmonization. Feature selection and model optimization were performed using nested cross-validation and Bayesian tuning. Hybrid models were trained using XGBoost and interpreted with SHAP values. The ISUP model achieved an AUC of 0.66, while the cN and cM models reached AUCs of 0.77 and 0.80, respectively. The best-performing models consistently combined prostate zone radiomics with clinical features such as PSA, PIRADSv2 and ISUP grade. SHAP analysis confirmed the importance of both clinical and texture-based radiomic features, with entropy and non-uniformity measures playing central roles in all tasks. Our results demonstrate the feasibility of using T2-weighted MRI and zonal radiomics for robust prediction of aggressiveness, nodal involvement and distant metastasis in PCa. This fully automated pipeline offers an interpretable, accessible and clinically translatable tool for first-line PCa triage, with potential integration into real-world diagnostic workflows.

Multimodal MRI radiomics enhances epilepsy prediction in pediatric low-grade glioma patients.

Tang T, Wu Y, Dong X, Zhai X

pubmed logopapersMay 22 2025
Determining whether pediatric patients with low-grade gliomas (pLGGs) have tumor-related epilepsy (GAE) is a crucial aspect of preoperative evaluation. Therefore, we aim to propose an innovative, machine learning- and deep learning-based framework for the rapid and non-invasive preoperative assessment of GAE in pediatric patients using magnetic resonance imaging (MRI). In this study, we propose a novel radiomics-based approach that integrates tumor and peritumoral features extracted from preoperative multiparametric MRI scans to accurately and non-invasively predict the occurrence of tumor-related epilepsy in pediatric patients. Our study developed a multimodal MRI radiomics model to predict epilepsy in pLGGs patients, achieving an AUC of 0.969. The integration of multi-sequence MRI data significantly improved predictive performance, with Stochastic Gradient Descent (SGD) classifier showing robust results (sensitivity: 0.882, specificity: 0.956). Our model can accurately predict whether pLGGs patients have tumor-related epilepsy, which could guide surgical decision-making. Future studies should focus on similarly standardized preoperative evaluations in pediatric epilepsy centers to increase training data and enhance the generalizability of the model.

Predicting Depression in Healthy Young Adults: A Machine Learning Approach Using Longitudinal Neuroimaging Data.

Zhang A, Zhang H

pubmed logopapersMay 22 2025
Accurate prediction of depressive symptoms in healthy individuals can enable early intervention and reduce both individual and societal costs. This study aimed to develop predictive models for depression in young adults using machine learning (ML) techniques and longitudinal data from the Beck Depression Inventory, structural MRI (sMRI), and resting-state functional MRI (rs-fMRI). Feature selection methods, including the least absolute shrinkage and selection operator (LASSO), Boruta, and VSURF, were applied to identify MRI features associated with depression. Support vector machine and random forest algorithms were then used to construct prediction models. Eight MRI features were identified as predictive of depression, including brain regions in the Orbital Gyrus, Superior Frontal Gyrus, Middle Frontal Gyrus, Parahippocampal Gyrus, Cingulate Gyrus, and Inferior Parietal Lobule. The overlaps and the differences between selected features and brain regions with significant between-group differences in t-tests suggest that ML provides a unique perspective on the neural changes associated with depression. Six pairs of prediction models demonstrated varying performance, with accuracies ranging from 0.68 to 0.85 and areas under the curve (AUC) ranging from 0.57 to 0.81. The best-performing model achieved an accuracy of 0.85 and an AUC of 0.80, highlighting the potential of combining sMRI and rs-fMRI features with ML for early depression detection while revealing the potential of overfitting in small-sample and high-dimensional settings. This study necessitates further research to (1) replicate findings in independent larger datasets to address potential overfitting and (2) utilize different advanced ML techniques and multimodal data fusion to improve model performance.

Denoising of high-resolution 3D UTE-MR angiogram data using lightweight and efficient convolutional neural networks.

Tessema AW, Ambaye DT, Cho H

pubmed logopapersMay 22 2025
High-resolution magnetic resonance angiography (~ 50 μm<sup>3</sup> MRA) data plays a critical role in the accurate diagnosis of various vascular disorders. However, it is very challenging to acquire, and it is susceptible to artifacts and noise which limits its ability to visualize smaller blood vessels and necessitates substantial noise reduction measures. Among many techniques, the BM4D filter is a state-of-the-art denoising technique but comes with high computational cost, particularly for high-resolution 3D MRA data. In this research, five different optimized convolutional neural networks were utilized to denoise contrast-enhanced UTE-MRA data using a supervised learning approach. Since noise-free MRA data is challenging to acquire, the denoised image using BM4D filter was used as ground truth and this research mainly focused on reducing computational cost and inference time for denoising high-resolution UTE-MRA data. All five models were able to generate nearly similar denoised data compared to the ground truth with different computational footprints. Among all, the nested-UNet model generated almost similar images with the ground truth and achieved SSIM, PSNR, and MSE of 0.998, 46.12, and 3.38e-5 with 3× faster inference time than the BM4D filter. In addition, most optimized models like UNet and attention-UNet models generated nearly similar images with nested-UNet but 8.8× and 7.1× faster than the BM4D filter. In conclusion, using highly optimized networks, we have shown the possibility of denoising high-resolution UTE-MRA data with significantly shorter inference time, even with limited datasets from animal models. This can potentially make high-resolution 3D UTE-MRA data to be less computationally burdensome.

Cross-Scale Texture Supplementation for Reference-based Medical Image Super-Resolution.

Li Y, Hao W, Zeng H, Wang L, Xu J, Routray S, Jhaveri RH, Gadekallu TR

pubmed logopapersMay 22 2025
Magnetic Resonance Imaging (MRI) is a widely used medical imaging technique, but its resolution is often limited by acquisition time constraints, potentially compromising diagnostic accuracy. Reference-based Image Super-Resolution (RefSR) has shown promising performance in addressing such challenges by leveraging external high-resolution (HR) reference images to enhance the quality of low-resolution (LR) images. The core objective of RefSR is to accurately establish correspondences between the reference HR image and the LR images. In pursuit of this objective, this paper develops a Self-rectified Texture Supplementation network for RefSR (STS-SR) to enhance fine details in MRI images and support the expanding role of autonomous AI in healthcare. Our network comprises a texture-specified selfrectified feature transfer module and a cross-scale texture complementary network. The feature transfer module employs highfrequency filtering to facilitate the network concentrating on fine details. To better exploit the information from both the reference and LR images, our cross-scale texture complementary module incorporates the All-ViT and Swin Transformer layers to achieve feature aggregation at multiple scales, which enables high-quality image enhancement that is critical for autonomous AI systems in healthcare to make accurate decisions. Extensive experiments are performed across various benchmark datasets. The results validate the effectiveness of our method and demonstrate that the method produces state-of-the-art performance as compared to existing approaches. This advancement enables autonomous AI systems to utilize high-quality MRI images for more accurate diagnostics and reliable predictions.

SAMba-UNet: Synergizing SAM2 and Mamba in UNet with Heterogeneous Aggregation for Cardiac MRI Segmentation

Guohao Huo, Ruiting Dai, Hao Tang

arxiv logopreprintMay 22 2025
To address the challenge of complex pathological feature extraction in automated cardiac MRI segmentation, this study proposes an innovative dual-encoder architecture named SAMba-UNet. The framework achieves cross-modal feature collaborative learning by integrating the vision foundation model SAM2, the state-space model Mamba, and the classical UNet. To mitigate domain discrepancies between medical and natural images, a Dynamic Feature Fusion Refiner is designed, which enhances small lesion feature extraction through multi-scale pooling and a dual-path calibration mechanism across channel and spatial dimensions. Furthermore, a Heterogeneous Omni-Attention Convergence Module (HOACM) is introduced, combining global contextual attention with branch-selective emphasis mechanisms to effectively fuse SAM2's local positional semantics and Mamba's long-range dependency modeling capabilities. Experiments on the ACDC cardiac MRI dataset demonstrate that the proposed model achieves a Dice coefficient of 0.9103 and an HD95 boundary error of 1.0859 mm, significantly outperforming existing methods, particularly in boundary localization for complex pathological structures such as right ventricular anomalies. This work provides an efficient and reliable solution for automated cardiac disease diagnosis, and the code will be open-sourced.

Generative adversarial DacFormer network for MRI brain tumor segmentation.

Zhang M, Sun Q, Han Y, Zhang M, Wang W, Zhang J

pubmed logopapersMay 22 2025
Current brain tumor segmentation methods often utilize a U-Net architecture based on efficient convolutional neural networks. While effective, these architectures primarily model local dependencies, lacking the ability to capture global interactions like pure Transformer. However, using pure Transformer directly causes the network to lose local feature information. To address this limitation, we propose the Generative Adversarial Dilated Attention Convolutional Transformer(GDacFormer). GDacFormer enhances interactions between tumor regions while balancing global and local information through the integration of adversarial learning with an improved transformer module. Specifically, GDacFormer leverages a generative adversarial segmentation network to learn richer and more detailed features. It integrates a novel Transformer module, DacFormer, featuring multi-scale dilated attention and a next convolution block. This module, embedded within the generator, aggregates semantic multi-scale information, efficiently reduces the redundancy in the self-attention mechanism, and enhances local feature representations, thus refining the brain tumor segmentation results. GDacFormer achieves Dice values for whole tumor, core tumor, and enhancing tumor segmentation of 90.9%/90.8%/93.7%, 84.6%/85.7%/93.5%, and 77.9%/79.3%/86.3% on BraTS2019-2021 datasets. Extensive evaluations demonstrate the effectiveness and competitiveness of GDacFormer. The code for GDacFormer will be made publicly available at https://github.com/MuqinZ/GDacFormer.
Page 103 of 1191186 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.