Sort by:
Page 102 of 1191186 results

Cross-Fusion Adaptive Feature Enhancement Transformer: Efficient high-frequency integration and sparse attention enhancement for brain MRI super-resolution.

Yang Z, Xiao H, Wang X, Zhou F, Deng T, Liu S

pubmed logopapersMay 24 2025
High-resolution magnetic resonance imaging (MRI) is essential for diagnosing and treating brain diseases. Transformer-based approaches demonstrate strong potential in MRI super-resolution by capturing long-range dependencies effectively. However, existing Transformer-based super-resolution methods face several challenges: (1) they primarily focus on low-frequency information, neglecting the utilization of high-frequency information; (2) they lack effective mechanisms to integrate both low-frequency and high-frequency information; (3) they struggle to effectively eliminate redundant information during the reconstruction process. To address these issues, we propose the Cross-fusion Adaptive Feature Enhancement Transformer (CAFET). Our model maximizes the potential of both CNNs and Transformers. It consists of four key blocks: a high-frequency enhancement block for extracting high-frequency information; a hybrid attention block for capturing global information and local fitting, which includes channel attention and shifted rectangular window attention; a large-window fusion attention block for integrating local high-frequency features and global low-frequency features; and an adaptive sparse overlapping attention block for dynamically retaining key information and enhancing the aggregation of cross-window features. Extensive experiments validate the effectiveness of the proposed method. On the BraTS and IXI datasets, with an upsampling factor of ×2, the proposed method achieves a maximum PSNR improvement of 2.4 dB and 1.3 dB compared to state-of-the-art methods, along with an SSIM improvement of up to 0.16% and 1.42%. Similarly, at an upsampling factor of ×4, the proposed method achieves a maximum PSNR improvement of 1.04 dB and 0.3 dB over the current leading methods, along with an SSIM improvement of up to 0.25% and 1.66%. Our method is capable of reconstructing high-quality super-resolution brain MRI images, demonstrating significant clinical potential.

SUFFICIENT: A scan-specific unsupervised deep learning framework for high-resolution 3D isotropic fetal brain MRI reconstruction

Jiangjie Wu, Lixuan Chen, Zhenghao Li, Xin Li, Saban Ozturk, Lihui Wang, Rongpin Wang, Hongjiang Wei, Yuyao Zhang

arxiv logopreprintMay 23 2025
High-quality 3D fetal brain MRI reconstruction from motion-corrupted 2D slices is crucial for clinical diagnosis. Reliable slice-to-volume registration (SVR)-based motion correction and super-resolution reconstruction (SRR) methods are essential. Deep learning (DL) has demonstrated potential in enhancing SVR and SRR when compared to conventional methods. However, it requires large-scale external training datasets, which are difficult to obtain for clinical fetal MRI. To address this issue, we propose an unsupervised iterative SVR-SRR framework for isotropic HR volume reconstruction. Specifically, SVR is formulated as a function mapping a 2D slice and a 3D target volume to a rigid transformation matrix, which aligns the slice to the underlying location in the target volume. The function is parameterized by a convolutional neural network, which is trained by minimizing the difference between the volume slicing at the predicted position and the input slice. In SRR, a decoding network embedded within a deep image prior framework is incorporated with a comprehensive image degradation model to produce the high-resolution (HR) volume. The deep image prior framework offers a local consistency prior to guide the reconstruction of HR volumes. By performing a forward degradation model, the HR volume is optimized by minimizing loss between predicted slices and the observed slices. Comprehensive experiments conducted on large-magnitude motion-corrupted simulation data and clinical data demonstrate the superior performance of the proposed framework over state-of-the-art fetal brain reconstruction frameworks.

Automated ventricular segmentation in pediatric hydrocephalus: how close are we?

Taha BR, Luo G, Naik A, Sabal L, Sun J, McGovern RA, Sandoval-Garcia C, Guillaume DJ

pubmed logopapersMay 23 2025
The explosive growth of available high-quality imaging data coupled with new progress in hardware capabilities has enabled a new era of unprecedented performance in brain segmentation tasks. Despite the explosion of new data released by consortiums and groups around the world, most published, closed, or openly available segmentation models have either a limited or an unknown role in pediatric brains. This study explores the utility of state-of-the-art automated ventricular segmentation tools applied to pediatric hydrocephalus. Two popular, fast, whole-brain segmentation tools were used (FastSurfer and QuickNAT) to automatically segment the lateral ventricles and evaluate their accuracy in children with hydrocephalus. Forty scans from 32 patients were included in this study. The patients underwent imaging at the University of Minnesota Medical Center or satellite clinics, were between 0 and 18 years old, had an ICD-10 diagnosis that included the word hydrocephalus, and had at least one T1-weighted pre- or postcontrast MPRAGE sequence. Patients with poor quality scans were excluded. Dice similarity coefficient (DSC) scores were used to compare segmentation outputs against manually segmented lateral ventricles. Overall, both models performed poorly with DSCs of 0.61 for each segmentation tool. No statistically significant difference was noted between model performance (p = 0.86). Using a multivariate linear regression to examine factors associated with higher DSC performance, male gender (p = 0.66), presence of ventricular catheter (p = 0.72), and MRI magnet strength (p = 0.23) were not statistically significant factors. However, younger age (p = 0.03) and larger ventricular volumes (p = 0.01) were significantly associated with lower DSC values. A large-scale visualization of 196 scans in both models showed characteristic patterns of segmentation failure in larger ventricles. Significant gaps exist in current cutting-edge segmentation models when applied to pediatric hydrocephalus. Researchers will need to address these types of gaps in performance through thoughtful consideration of their training data before reaching the ultimate goal of clinical deployment.

Self-supervised feature learning for cardiac Cine MR image reconstruction.

Xu S, Fruh M, Hammernik K, Lingg A, Kubler J, Krumm P, Rueckert D, Gatidis S, Kustner T

pubmed logopapersMay 23 2025
We propose a self-supervised feature learning assisted reconstruction (SSFL-Recon) framework for MRI reconstruction to address the limitation of existing supervised learning methods. Although recent deep learning-based methods have shown promising performance in MRI reconstruction, most require fully-sampled images for supervised learning, which is challenging in practice considering long acquisition times under respiratory or organ motion. Moreover, nearly all fully-sampled datasets are obtained from conventional reconstruction of mildly accelerated datasets, thus potentially biasing the achievable performance. The numerous undersampled datasets with different accelerations in clinical practice, hence, remain underutilized. To address these issues, we first train a self-supervised feature extractor on undersampled images to learn sampling-insensitive features. The pre-learned features are subsequently embedded in the self-supervised reconstruction network to assist in removing artifacts. Experiments were conducted retrospectively on an in-house 2D cardiac Cine dataset, including 91 cardiovascular patients and 38 healthy subjects. The results demonstrate that the proposed SSFL-Recon framework outperforms existing self-supervised MRI reconstruction methods and even exhibits comparable or better performance to supervised learning up to 16× retrospective undersampling. The feature learning strategy can effectively extract global representations, which have proven beneficial in removing artifacts and increasing generalization ability during reconstruction.

Artificial Intelligence enhanced R1 maps can improve lesion detection in focal epilepsy in children

Doumou, G., D'Arco, F., Figini, M., Lin, H., Lorio, S., Piper, R., O'Muircheartaigh, J., Cross, H., Weiskopf, N., Alexander, D., Carmichael, D. W.

medrxiv logopreprintMay 23 2025
Background and purposeMRI is critical for the detection of subtle cortical pathology in epilepsy surgery assessment. This can be aided by improved MRI quality and resolution using ultra-high field (7T). But poor access and long scan durations limit widespread use, particularly in a paediatric setting. AI-based learning approaches may provide similar information by enhancing data obtained with conventional MRI (3T). We used a convolutional neural network trained on matched 3T and 7T images to enhance quantitative R1-maps (longitudinal relaxation rate) obtained at 3T in paediatric epilepsy patients and to determine their potential clinical value for lesion identification. Materials and MethodsA 3D U-Net was trained using paired patches from 3T and 7T R1-maps from n=10 healthy volunteers. The trained network was applied to enhance paediatric focal epilepsy 3T R1 images from a different scanner/site (n=17 MRI lesion positive / n=14 MR-negative). Radiological review assessed image quality, as well as lesion identification and visualization of enhanced maps in comparison to the 3T R1-maps without clinical information. Lesion appearance was then compared to 3D-FLAIR. ResultsAI enhanced R1 maps were superior in terms of image quality in comparison to the original 3T R1 maps, while preserving and enhancing the visibility of lesions. After exclusion of 5/31 patients (due to movement artefact or incomplete data), lesions were detected in AI Enhanced R1 maps for 14/15 (93%) MR-positive and 4/11 (36%) MR-negative patients. ConclusionAI enhanced R1 maps improved the visibility of lesions in MR positive patients, as well as providing higher sensitivity in the MR-negative group compared to either the original 3T R1-maps or 3D-FLAIR. This provides promising initial evidence that 3T quantitative maps can outperform conventional 3T imaging via enhancement by an AI model trained on 7T MRI data, without the need for pathology-specific information.

Multi-view contrastive learning and symptom extraction insights for medical report generation.

Bai Q, Zou X, Alhaskawi A, Dong Y, Zhou H, Ezzi SHA, Kota VG, AbdullaAbdulla MHH, Abdalbary SA, Hu X, Lu H

pubmed logopapersMay 23 2025
The task of generating medical reports automatically is of paramount importance in modern healthcare, offering a substantial reduction in the workload of radiologists and accelerating the processes of clinical diagnosis and treatment. Current challenges include handling limited sample sizes and interpreting intricate multi-modal and multi-view medical data. In order to improve the accuracy and efficiency for radiologists, we conducted this investigation. This study aims to present a novel methodology for medical report generation that leverages Multi-View Contrastive Learning (MVCL) applied to MRI data, combined with a Symptom Consultant (SC) for extracting medical insights, to improve the quality and efficiency of automated medical report generation. We introduce an advanced MVCL framework that maximizes the potential of multi-view MRI data to enhance visual feature extraction. Alongside, the SC component is employed to distill critical medical insights from symptom descriptions. These components are integrated within a transformer decoder architecture, which is then applied to the Deep Wrist dataset for model training and evaluation. Our experimental analysis on the Deep Wrist dataset reveals that our proposed integration of MVCL and SC significantly outperforms the baseline model in terms of accuracy and relevance of the generated medical reports. The results indicate that our approach is particularly effective in capturing and utilizing the complex information inherent in multi-modal and multi-view medical datasets. The combination of MVCL and SC constitutes a powerful approach to medical report generation, addressing the existing challenges in the field. The demonstrated superiority of our model over traditional methods holds promise for substantial improvements in clinical diagnosis and automated report generation, indicating a significant stride forward in medical technology.

Anatomy-Guided Multitask Learning for MRI-Based Classification of Placenta Accreta Spectrum and its Subtypes

Hai Jiang, Qiongting Liu, Yuanpin Zhou, Jiawei Pan, Ting Song, Yao Lu

arxiv logopreprintMay 23 2025
Placenta Accreta Spectrum Disorders (PAS) pose significant risks during pregnancy, frequently leading to postpartum hemorrhage during cesarean deliveries and other severe clinical complications, with bleeding severity correlating to the degree of placental invasion. Consequently, accurate prenatal diagnosis of PAS and its subtypes-placenta accreta (PA), placenta increta (PI), and placenta percreta (PP)-is crucial. However, existing guidelines and methodologies predominantly focus on the presence of PAS, with limited research addressing subtype recognition. Additionally, previous multi-class diagnostic efforts have primarily relied on inefficient two-stage cascaded binary classification tasks. In this study, we propose a novel convolutional neural network (CNN) architecture designed for efficient one-stage multiclass diagnosis of PAS and its subtypes, based on 4,140 magnetic resonance imaging (MRI) slices. Our model features two branches: the main classification branch utilizes a residual block architecture comprising multiple residual blocks, while the second branch integrates anatomical features of the uteroplacental area and the adjacent uterine serous layer to enhance the model's attention during classification. Furthermore, we implement a multitask learning strategy to leverage both branches effectively. Experiments conducted on a real clinical dataset demonstrate that our model achieves state-of-the-art performance.

Brightness-Invariant Tracking Estimation in Tagged MRI

Zhangxing Bian, Shuwen Wei, Xiao Liang, Yuan-Chiao Lu, Samuel W. Remedios, Fangxu Xing, Jonghye Woo, Dzung L. Pham, Aaron Carass, Philip V. Bayly, Jiachen Zhuo, Ahmed Alshareef, Jerry L. Prince

arxiv logopreprintMay 23 2025
Magnetic resonance (MR) tagging is an imaging technique for noninvasively tracking tissue motion in vivo by creating a visible pattern of magnetization saturation (tags) that deforms with the tissue. Due to longitudinal relaxation and progression to steady-state, the tags and tissue brightnesses change over time, which makes tracking with optical flow methods error-prone. Although Fourier methods can alleviate these problems, they are also sensitive to brightness changes as well as spectral spreading due to motion. To address these problems, we introduce the brightness-invariant tracking estimation (BRITE) technique for tagged MRI. BRITE disentangles the anatomy from the tag pattern in the observed tagged image sequence and simultaneously estimates the Lagrangian motion. The inherent ill-posedness of this problem is addressed by leveraging the expressive power of denoising diffusion probabilistic models to represent the probabilistic distribution of the underlying anatomy and the flexibility of physics-informed neural networks to estimate biologically-plausible motion. A set of tagged MR images of a gel phantom was acquired with various tag periods and imaging flip angles to demonstrate the impact of brightness variations and to validate our method. The results show that BRITE achieves more accurate motion and strain estimates as compared to other state of the art methods, while also being resistant to tag fading.

A Foundation Model Framework for Multi-View MRI Classification of Extramural Vascular Invasion and Mesorectal Fascia Invasion in Rectal Cancer

Yumeng Zhang, Zohaib Salahuddin, Danial Khan, Shruti Atul Mali, Henry C. Woodruff, Sina Amirrajab, Eduardo Ibor-Crespo, Ana Jimenez-Pastor, Luis Marti-Bonmati, Philippe Lambin

arxiv logopreprintMay 23 2025
Background: Accurate MRI-based identification of extramural vascular invasion (EVI) and mesorectal fascia invasion (MFI) is pivotal for risk-stratified management of rectal cancer, yet visual assessment is subjective and vulnerable to inter-institutional variability. Purpose: To develop and externally evaluate a multicenter, foundation-model-driven framework that automatically classifies EVI and MFI on axial and sagittal T2-weighted MRI. Methods: This retrospective study used 331 pre-treatment rectal cancer MRI examinations from three European hospitals. After TotalSegmentator-guided rectal patch extraction, a self-supervised frequency-domain harmonization pipeline was trained to minimize scanner-related contrast shifts. Four classifiers were compared: ResNet50, SeResNet, the universal biomedical pretrained transformer (UMedPT) with a lightweight MLP head, and a logistic-regression variant using frozen UMedPT features (UMedPT_LR). Results: UMedPT_LR achieved the best EVI detection when axial and sagittal features were fused (AUC = 0.82; sensitivity = 0.75; F1 score = 0.73), surpassing the Chaimeleon Grand-Challenge winner (AUC = 0.74). The highest MFI performance was attained by UMedPT on axial harmonized images (AUC = 0.77), surpassing the Chaimeleon Grand-Challenge winner (AUC = 0.75). Frequency-domain harmonization improved MFI classification but variably affected EVI performance. Conventional CNNs (ResNet50, SeResNet) underperformed, especially in F1 score and balanced accuracy. Conclusion: These findings demonstrate that combining foundation model features, harmonization, and multi-view fusion significantly enhances diagnostic performance in rectal MRI.

Explainable Anatomy-Guided AI for Prostate MRI: Foundation Models and In Silico Clinical Trials for Virtual Biopsy-based Risk Assessment

Danial Khan, Zohaib Salahuddin, Yumeng Zhang, Sheng Kuang, Shruti Atul Mali, Henry C. Woodruff, Sina Amirrajab, Rachel Cavill, Eduardo Ibor-Crespo, Ana Jimenez-Pastor, Adrian Galiana-Bordera, Paula Jimenez Gomez, Luis Marti-Bonmati, Philippe Lambin

arxiv logopreprintMay 23 2025
We present a fully automated, anatomically guided deep learning pipeline for prostate cancer (PCa) risk stratification using routine MRI. The pipeline integrates three key components: an nnU-Net module for segmenting the prostate gland and its zones on axial T2-weighted MRI; a classification module based on the UMedPT Swin Transformer foundation model, fine-tuned on 3D patches with optional anatomical priors and clinical data; and a VAE-GAN framework for generating counterfactual heatmaps that localize decision-driving image regions. The system was developed using 1,500 PI-CAI cases for segmentation and 617 biparametric MRIs with metadata from the CHAIMELEON challenge for classification (split into 70% training, 10% validation, and 20% testing). Segmentation achieved mean Dice scores of 0.95 (gland), 0.94 (peripheral zone), and 0.92 (transition zone). Incorporating gland priors improved AUC from 0.69 to 0.72, with a three-scale ensemble achieving top performance (AUC = 0.79, composite score = 0.76), outperforming the 2024 CHAIMELEON challenge winners. Counterfactual heatmaps reliably highlighted lesions within segmented regions, enhancing model interpretability. In a prospective multi-center in-silico trial with 20 clinicians, AI assistance increased diagnostic accuracy from 0.72 to 0.77 and Cohen's kappa from 0.43 to 0.53, while reducing review time per case by 40%. These results demonstrate that anatomy-aware foundation models with counterfactual explainability can enable accurate, interpretable, and efficient PCa risk assessment, supporting their potential use as virtual biopsies in clinical practice.
Page 102 of 1191186 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.