Sort by:
Page 100 of 1411410 results

Preclinical Investigation of Artificial Intelligence-Assisted Implant Surgery Planning for Single Tooth Defects: A Case Series Study.

Ma H, Wu Y, Bai H, Xu Z, Ding P, Deng X, Tang Z

pubmed logopapersJun 12 2025
Dental implant surgery has become a prevalent treatment option for patients with single tooth defects. However, the success of this surgery relies heavily on precise planning and execution. This study investigates the application of artificial intelligence (AI) in assisting the planning process of dental implant surgery for single tooth defects. Single tooth defects in the oral cavity pose a significant challenge in restorative dentistry. Dental implant restoration has emerged as an effective solution for rehabilitating such defects. However, the complexity of the procedure and the need for accurate treatment planning necessitate the integration of advanced technologies. In this study, we propose the utilisation of AI to enhance the precision and efficiency of implant surgery planning for single tooth defects. A total of twenty patients with single tooth loss were enrolled. Cone-beam computed tomography (CBCT) and intra-oral scans were obtained and imported into the AI-dentist software for 3D reconstruction. AI assisted in implant selection, tooth position identification, and crown fabrication. Evaluation included subjective verification and objective assessments. A paired samples t-test was used to compare planning times (dentist vs. AI), with a significance level of p < 0.05. Twenty patients (9 male, 11 female; mean age 59.5 ± 11.86 years) with single missing teeth participated in this study. Implant margins were carefully positioned: 3.05 ± 1.44 mm from adjacent roots, 2.52 ± 0.65 mm from bone plate edges, 3.05 ± 1.44 mm from sinus/canal, and 3.85 ± 1.23 mm from gingival height. Manual planning (21.50 ± 4.87 min) was statistically significantly slower than AI (11.84 ± 3.22 min, p < 0.01). Implant planning met 100% buccolingual/proximal/distal bone volume criteria and 90% sinus/canal distance criteria. Two patients required sinus lifting and bone grafting due to insufficient bone volume. This study highlights the promising role of AI in enhancing the precision and efficiency of dental implant surgery planning for single tooth defects. Further studies are necessary to validate the effectiveness and safety of AI-assisted planning in a larger patient population.

SWDL: Stratum-Wise Difference Learning with Deep Laplacian Pyramid for Semi-Supervised 3D Intracranial Hemorrhage Segmentation

Cheng Wang, Siqi Chen, Donghua Mi, Yang Chen, Yudong Zhang, Yinsheng Li

arxiv logopreprintJun 12 2025
Recent advances in medical imaging have established deep learning-based segmentation as the predominant approach, though it typically requires large amounts of manually annotated data. However, obtaining annotations for intracranial hemorrhage (ICH) remains particularly challenging due to the tedious and costly labeling process. Semi-supervised learning (SSL) has emerged as a promising solution to address the scarcity of labeled data, especially in volumetric medical image segmentation. Unlike conventional SSL methods that primarily focus on high-confidence pseudo-labels or consistency regularization, we propose SWDL-Net, a novel SSL framework that exploits the complementary advantages of Laplacian pyramid and deep convolutional upsampling. The Laplacian pyramid excels at edge sharpening, while deep convolutions enhance detail precision through flexible feature mapping. Our framework achieves superior segmentation of lesion details and boundaries through a difference learning mechanism that effectively integrates these complementary approaches. Extensive experiments on a 271-case ICH dataset and public benchmarks demonstrate that SWDL-Net outperforms current state-of-the-art methods in scenarios with only 2% labeled data. Additional evaluations on the publicly available Brain Hemorrhage Segmentation Dataset (BHSD) with 5% labeled data further confirm the superiority of our approach. Code and data have been released at https://github.com/SIAT-CT-LAB/SWDL.

Simulation-free workflow for lattice radiation therapy using deep learning predicted synthetic computed tomography: A feasibility study.

Zhu L, Yu NY, Ahmed SK, Ashman JB, Toesca DS, Grams MP, Deufel CL, Duan J, Chen Q, Rong Y

pubmed logopapersJun 12 2025
Lattice radiation therapy (LRT) is a form of spatially fractionated radiation therapy that allows increased total dose delivery aiming for improved treatment response without an increase in toxicities, commonly utilized for palliation of bulky tumors. The LRT treatment planning process is complex, while eligible patients often have an urgent need for expedited treatment start. In this study, we aimed to develop a simulation-free workflow for volumetric modulated arc therapy (VMAT)-based LRT planning via deep learning-predicted synthetic CT (sCT) to expedite treatment initiation. Two deep learning models were initially trained using 3D U-Net architecture to generate sCT from diagnostic CTs (dCT) of the thoracic and abdomen regions using a training dataset of 50 patients. The models were then tested on an independent dataset of 15 patients using image similarity analysis assessing mean absolute error (MAE) and structural similarity index measure (SSIM) as metrics. VMAT-based LRT plans were generated based on sCT and recalculated on the planning CT (pCT) for dosimetric accuracy comparison. Differences in dose volume histogram (DVH) metrics between pCT and sCT plans were assessed using the Wilcoxon signed-rank test. The final sCT prediction model demonstrated high image similarity to pCT, with a MAE and SSIM of 38.93 ± 14.79 Hounsfield Units (HU) and 0.92 ± 0.05 for the thoracic region, and 73.60 ± 22.90 HU and 0.90 ± 0.03 for the abdominal region, respectively. There were no statistically significant differences between sCT and pCT plans in terms of organ-at-risk and target volume DVH parameters, including maximum dose (Dmax), mean dose (Dmean), dose delivered to 90% (D90%) and 50% (D50%) of target volume, except for minimum dose (Dmin) and (D10%). With demonstrated high image similarity and adequate dose agreement between sCT and pCT, our study is a proof-of-concept for using deep learning predicted sCT for a simulation-free treatment planning workflow for VMAT-based LRT.

Tackling Tumor Heterogeneity Issue: Transformer-Based Multiple Instance Enhancement Learning for Predicting EGFR Mutation via CT Images.

Fang Y, Wang M, Song Q, Cao C, Gao Z, Song B, Min X, Li A

pubmed logopapersJun 12 2025
Accurate and non-invasive prediction of epidermal growth factor receptor (EGFR) mutation is crucial for the diagnosis and treatment of non-small cell lung cancer (NSCLC). While computed tomography (CT) imaging shows promise in identifying EGFR mutation, current prediction methods heavily rely on fully supervised learning, which overlooks the substantial heterogeneity of tumors and therefore leads to suboptimal results. To tackle tumor heterogeneity issue, this study introduces a novel weakly supervised method named TransMIEL, which leverages multiple instance learning techniques for accurate EGFR mutation prediction. Specifically, we first propose an innovative instance enhancement learning (IEL) strategy that strengthens the discriminative power of instance features for complex tumor CT images by exploring self-derived soft pseudo-labels. Next, to improve tumor representation capability, we design a spatial-aware transformer (SAT) that fully captures inter-instance relationships of different pathological subregions to mirror the diagnostic processes of radiologists. Finally, an instance adaptive gating (IAG) module is developed to effectively emphasize the contribution of informative instance features in heterogeneous tumors, facilitating dynamic instance feature aggregation and increasing model generalization performance. Experimental results demonstrate that TransMIEL significantly outperforms existing fully and weakly supervised methods on both public and in-house NSCLC datasets. Additionally, visualization results show that our approach can highlight intra-tumor and peri-tumor areas relevant to EGFR mutation status. Therefore, our method holds significant potential as an effective tool for EGFR prediction and offers a novel perspective for future research on tumor heterogeneity.

Radiogenomic correlation of hypoxia-related biomarkers in clear cell renal cell carcinoma.

Shao Y, Cen HS, Dhananjay A, Pawan SJ, Lei X, Gill IS, D'souza A, Duddalwar VA

pubmed logopapersJun 12 2025
This study aimed to evaluate radiomic models' ability to predict hypoxia-related biomarker expression in clear cell renal cell carcinoma (ccRCC). Clinical and molecular data from 190 patients were extracted from The Cancer Genome Atlas-Kidney Renal Clear Cell Carcinoma dataset, and corresponding CT imaging data were manually segmented from The Cancer Imaging Archive. A panel of 2,824 radiomic features was analyzed, and robust, high-interscanner-reproducibility features were selected. Gene expression data for 13 hypoxia-related biomarkers were stratified by tumor grade (1/2 vs. 3/4) and stage (I/II vs. III/IV) and analyzed using Wilcoxon rank sum test. Machine learning modeling was conducted using the High-Performance Random Forest (RF) procedure in SAS Enterprise Miner 15.1, with significance at P < 0.05. Descriptive univariate analysis revealed significantly lower expression of several biomarkers in high-grade and late-stage tumors, with KLF6 showing the most notable decrease. The RF model effectively predicted the expression of KLF6, ETS1, and BCL2, as well as PLOD2 and PPARGC1A underexpression. Stratified performance assessment showed improved predictive ability for RORA, BCL2, and KLF6 in high-grade tumors and for ETS1 across grades, with no significant performance difference across grade or stage. The RF model demonstrated modest but significant associations between texture metrics derived from clinical CT scans, such as GLDM and GLCM, and key hypoxia-related biomarkers including KLF6, BCL2, ETS1, and PLOD2. These findings suggest that radiomic analysis could support ccRCC risk stratification and personalized treatment planning by providing non-invasive insights into tumor biology.

Accelerating Diffusion: Task-Optimized latent diffusion models for rapid CT denoising.

Jee J, Chang W, Kim E, Lee K

pubmed logopapersJun 12 2025
Computed tomography (CT) systems are indispensable for diagnostics but pose risks due to radiation exposure. Low-dose CT (LDCT) mitigates these risks but introduces noise and artifacts that compromise diagnostic accuracy. While deep learning methods, such as convolutional neural networks (CNNs) and generative adversarial networks (GANs), have been applied to LDCT denoising, challenges persist, including difficulties in preserving fine details and risks of model collapse. Recently, the Denoising Diffusion Probabilistic Model (DDPM) has addressed the limitations of traditional methods and demonstrated exceptional performance across various tasks. Despite these advancements, its high computational cost during training and extended sampling time significantly hinder practical clinical applications. Additionally, DDPM's reliance on random Gaussian noise can reduce optimization efficiency and performance in task-specific applications. To overcome these challenges, this study proposes a novel LDCT denoising framework that integrates the Latent Diffusion Model (LDM) with the Cold Diffusion Process. LDM reduces computational costs by conducting the diffusion process in a low-dimensional latent space while preserving critical image features. The Cold Diffusion Process replaces Gaussian noise with a CT denoising task-specific degradation approach, enabling efficient denoising with fewer time steps. Experimental results demonstrate that the proposed method outperforms DDPM in key metrics, including PSNR, SSIM, and RMSE, while achieving up to 2 × faster training and 14 × faster sampling. These advancements highlight the proposed framework's potential as an effective and practical solution for real-world clinical applications.

CT derived fractional flow reserve: Part 2 - Critical appraisal of the literature.

Rodriguez-Lozano PF, Waheed A, Evangelou S, Kolossváry M, Shaikh K, Siddiqui S, Stipp L, Lakshmanan S, Wu EH, Nurmohamed NS, Orbach A, Baliyan V, de Matos JFRG, Trivedi SJ, Madan N, Villines TC, Ihdayhid AR

pubmed logopapersJun 12 2025
The integration of computed tomography-derived fractional flow reserve (CT-FFR), utilizing computational fluid dynamics and artificial intelligence (AI) in routine coronary computed tomographic angiography (CCTA), presents a promising approach to enhance evaluations of functional lesion severity. Extensive evidence underscores the diagnostic accuracy, prognostic significance, and clinical relevance of CT-FFR, prompting recent clinical guidelines to recommend its combined use with CCTA for selected individuals with with intermediate stenosis on CCTA and stable or acute chest pain. This manuscript critically examines the existing clinical evidence, evaluates the diagnostic performance, and outlines future perspectives for integrating noninvasive assessments of coronary anatomy and physiology. Furthermore, it serves as a practical guide for medical imaging professionals by addressing common pitfalls and challenges associated with CT-FFR while proposing potential solutions to facilitate its successful implementation in clinical practice.

Improving the Robustness of Deep Learning Models in Predicting Hematoma Expansion from Admission Head CT.

Tran AT, Abou Karam G, Zeevi D, Qureshi AI, Malhotra A, Majidi S, Murthy SB, Park S, Kontos D, Falcone GJ, Sheth KN, Payabvash S

pubmed logopapersJun 12 2025
Robustness against input data perturbations is essential for deploying deep learning models in clinical practice. Adversarial attacks involve subtle, voxel-level manipulations of scans to increase deep learning models' prediction errors. Testing deep learning model performance on examples of adversarial images provides a measure of robustness, and including adversarial images in the training set can improve the model's robustness. In this study, we examined adversarial training and input modifications to improve the robustness of deep learning models in predicting hematoma expansion (HE) from admission head CTs of patients with acute intracerebral hemorrhage (ICH). We used a multicenter cohort of <i>n</i> = 890 patients for cross-validation/training, and a cohort of <i>n</i> = 684 consecutive patients with ICH from 2 stroke centers for independent validation. Fast gradient sign method (FGSM) and projected gradient descent (PGD) adversarial attacks were applied for training and testing. We developed and tested 4 different models to predict ≥3 mL, ≥6 mL, ≥9 mL, and ≥12 mL HE in an independent validation cohort applying receiver operating characteristics area under the curve (AUC). We examined varying mixtures of adversarial and nonperturbed (clean) scans for training as well as including additional input from the hyperparameter-free Otsu multithreshold segmentation for model. When deep learning models trained solely on clean scans were tested with PGD and FGSM adversarial images, the average HE prediction AUC decreased from 0.8 to 0.67 and 0.71, respectively. Overall, the best performing strategy to improve model robustness was training with 5:3 mix of clean and PGD adversarial scans and addition of Otsu multithreshold segmentation to model input, increasing the average AUC to 0.77 against both PGD and FGSM adversarial attacks. Adversarial training with FGSM improved robustness against similar type attack but offered limited cross-attack robustness against PGD-type images. Adversarial training and inclusion of threshold-based segmentation as an additional input can improve deep learning model robustness in prediction of HE from admission head CTs in acute ICH.

High visceral-to-subcutaneous fat area ratio is an unfavorable prognostic indicator in patients with uterine sarcoma.

Kurokawa M, Gonoi W, Hanaoka S, Kurokawa R, Uehara S, Kato M, Suzuki M, Toyohara Y, Takaki Y, Kusakabe M, Kino N, Tsukazaki T, Unno T, Sone K, Abe O

pubmed logopapersJun 12 2025
Uterine sarcoma is a rare disease whose association with body composition parameters is poorly understood. This study explored the impact of body composition parameters on overall survival with uterine sarcoma. This multicenter study included 52 patients with uterine sarcomas treated at three Japanese hospitals between 2007 and 2023. A semi-automatic segmentation program based on deep learning analyzed transaxial CT images at the L3 vertebral level, calculating body composition parameters as follows: area indices (areas divided by height squared) of skeletal muscle, visceral and subcutaneous adipose tissue (SMI, VATI, and SATI, respectively); skeletal muscle density; and the visceral-to-subcutaneous fat area ratio (VSR). The optimal cutoff values for each parameter were calculated using maximally selected rank statistics with several p value approximations. The effects of body composition parameters and clinical data on overall survival (OS) and cancer-specific survival (CSS) were analyzed. Univariate Cox proportional hazards regression analysis revealed that advanced stage (III-IV) and high VSR were unfavorable prognostic factors for both OS and CSS. Multivariate Cox proportional hazard regression analysis revealed that advanced stage (III-IV) (hazard ratios (HRs), 4.67 for OS and 4.36 for CSS, p < 0.01), and high VSR (HRs, 9.36 for OS and 8.22 for CSS, p < 0.001) were poor prognostic factors for both OS and CSS. Added values were observed when the VSR was incorporated into the OS and the CSS prediction models. Increased VSR and tumor stage are significant predictors of poor overall survival in patients with uterine sarcoma.

CT-based deep learning model for improved disease-free survival prediction in clinical stage I lung cancer: a real-world multicenter study.

Fu Y, Hou R, Qian L, Feng W, Zhang Q, Yu W, Cai X, Liu J, Wang Y, Ding Z, Xu Y, Zhao J, Fu X

pubmed logopapersJun 12 2025
To develop a deep learning (DL) model for predicting disease-free survival (DFS) in clinical stage I lung cancer patients who underwent surgical resection using pre-treatment CT images, and further validate it in patients receiving stereotactic body radiation therapy (SBRT). A retrospective cohort of 2489 clinical stage I non-small cell lung cancer (NSCLC) patients treated with operation (2015-2017) was enrolled to develop a DL-based DFS prediction model. Tumor features were extracted from CT images using a three-dimensional convolutional neural network. External validation was performed on 248 clinical stage I patients receiving SBRT from two hospitals. A clinical model was constructed by multivariable Cox regression for comparison. Model performance was evaluated with Harrell's concordance index (C-index), which measures the model's ability to correctly rank survival times by comparing all possible pairs of subjects. In the surgical cohort, the DL model effectively predicted DFS with a C-index of 0.85 (95% CI: 0.80-0.89) in the internal testing set, significantly outperforming the clinical model (C-index: 0.76). Based on the DL model, 68 patients in the SBRT cohort identified as high-risk had significantly worse DFS compared to the low-risk group (p < 0.01, 5-year DFS rate: 34.7% vs 77.4%). The DL-score was demonstrated to be an independent predictor of DFS in both cohorts (p < 0.01). The CT-based DL model improved DFS prediction in clinical stage I lung cancer patients, identifying populations at high risk of recurrence and metastasis to guide clinical decision-making. Question The recurrence or metastasis rate of early-stage lung cancer remains high and varies among patients following radical treatments such as surgery or SBRT. Findings This CT-based DL model successfully predicted DFS and stratified varying disease risks in clinical stage I lung cancer patients undergoing surgery or SBRT. Clinical relevance The CT-based DL model is a reliable predictive tool for the prognosis of early-stage lung cancer. Its accurate risk stratification assists clinicians in identifying specific patients for personalized clinical decision making.
Page 100 of 1411410 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.