Sort by:
Page 10 of 1291284 results

An Enhanced Privacy-preserving Federated Few-shot Learning Framework for Respiratory Disease Diagnosis

Ming Wang, Zhaoyang Duan, Dong Xue, Fangzhou Liu, Zhongheng Zhang

arxiv logopreprintJul 10 2025
The labor-intensive nature of medical data annotation presents a significant challenge for respiratory disease diagnosis, resulting in a scarcity of high-quality labeled datasets in resource-constrained settings. Moreover, patient privacy concerns complicate the direct sharing of local medical data across institutions, and existing centralized data-driven approaches, which rely on amounts of available data, often compromise data privacy. This study proposes a federated few-shot learning framework with privacy-preserving mechanisms to address the issues of limited labeled data and privacy protection in diagnosing respiratory diseases. In particular, a meta-stochastic gradient descent algorithm is proposed to mitigate the overfitting problem that arises from insufficient data when employing traditional gradient descent methods for neural network training. Furthermore, to ensure data privacy against gradient leakage, differential privacy noise from a standard Gaussian distribution is integrated into the gradients during the training of private models with local data, thereby preventing the reconstruction of medical images. Given the impracticality of centralizing respiratory disease data dispersed across various medical institutions, a weighted average algorithm is employed to aggregate local diagnostic models from different clients, enhancing the adaptability of a model across diverse scenarios. Experimental results show that the proposed method yields compelling results with the implementation of differential privacy, while effectively diagnosing respiratory diseases using data from different structures, categories, and distributions.

Understanding Dataset Bias in Medical Imaging: A Case Study on Chest X-rays

Ethan Dack, Chengliang Dai

arxiv logopreprintJul 10 2025
Recent works have revisited the infamous task ``Name That Dataset'', demonstrating that non-medical datasets contain underlying biases and that the dataset origin task can be solved with high accuracy. In this work, we revisit the same task applied to popular open-source chest X-ray datasets. Medical images are naturally more difficult to release for open-source due to their sensitive nature, which has led to certain open-source datasets being extremely popular for research purposes. By performing the same task, we wish to explore whether dataset bias also exists in these datasets. To extend our work, we apply simple transformations to the datasets, repeat the same task, and perform an analysis to identify and explain any detected biases. Given the importance of AI applications in medical imaging, it's vital to establish whether modern methods are taking shortcuts or are focused on the relevant pathology. We implement a range of different network architectures on the datasets: NIH, CheXpert, MIMIC-CXR and PadChest. We hope this work will encourage more explainable research being performed in medical imaging and the creation of more open-source datasets in the medical domain. Our code can be found here: https://github.com/eedack01/x_ray_ds_bias.

Understanding Dataset Bias in Medical Imaging: A Case Study on Chest X-rays

Ethan Dack, Chengliang Dai

arxiv logopreprintJul 10 2025
Recent works have revisited the infamous task ``Name That Dataset'', demonstrating that non-medical datasets contain underlying biases and that the dataset origin task can be solved with high accuracy. In this work, we revisit the same task applied to popular open-source chest X-ray datasets. Medical images are naturally more difficult to release for open-source due to their sensitive nature, which has led to certain open-source datasets being extremely popular for research purposes. By performing the same task, we wish to explore whether dataset bias also exists in these datasets. To extend our work, we apply simple transformations to the datasets, repeat the same task, and perform an analysis to identify and explain any detected biases. Given the importance of AI applications in medical imaging, it's vital to establish whether modern methods are taking shortcuts or are focused on the relevant pathology. We implement a range of different network architectures on the datasets: NIH, CheXpert, MIMIC-CXR and PadChest. We hope this work will encourage more explainable research being performed in medical imaging and the creation of more open-source datasets in the medical domain. Our code can be found here: https://github.com/eedack01/x_ray_ds_bias.

Development of a deep learning-based MRI diagnostic model for human Brucella spondylitis.

Wang B, Wei J, Wang Z, Niu P, Yang L, Hu Y, Shao D, Zhao W

pubmed logopapersJul 9 2025
Brucella spondylitis (BS) and tuberculous spondylitis (TS) are prevalent spinal infections with distinct treatment protocols. Rapid and accurate differentiation between these two conditions is crucial for effective clinical management; however, current imaging and pathogen-based diagnostic methods fall short of fully meeting clinical requirements. This study explores the feasibility of employing deep learning (DL) models based on conventional magnetic resonance imaging (MRI) to differentiate BS and TS. A total of 310 subjects were enrolled in our hospital, comprising 209 with BS, 101 with TS. The participants were randomly divided into a training set (n = 217) and a test set (n = 93). And 74 with other hospital was external validation set. Integrating Convolutional Block Attention Module (CBAM) into the ResNeXt-50 architecture and training the model using sagittal T2-weighted images (T2WI). Classification performance was evaluated using the area under the receiver operating characteristic (AUC) curve, and diagnostic accuracy was compared against general models such as ResNet50, GoogleNet, EfficientNetV2, and VGG16. The CBAM-ResNeXt model revealed superior performance, with accuracy, precision, recall, F1-score, and AUC from 0.942, 0.940, 0.928, 0.934, 0.953, respectively. These metrics outperformed those of the general models. The proposed model offers promising potential for the diagnosis of BS and TS using conventional MRI. It could serve as an invaluable tool in clinical practice, providing a reliable reference for distinguishing between these two diseases.

Applying deep learning techniques to identify tonsilloliths in panoramic radiography.

Katı E, Baybars SC, Danacı Ç, Tuncer SA

pubmed logopapersJul 9 2025
Tonsilloliths can be seen on panoramic radiographs (PRs) as deposits located on the middle portion of the ramus of the mandible. Although tonsilloliths are clinically harmless, the high risk of misdiagnosis leads to unnecessary advanced examinations and interventions, thus jeopardizing patient safety and increasing unnecessary resource use in the healthcare system. Therefore, this study aims to meet an important clinical need by providing accurate and rapid diagnostic support. The dataset consisted of a total of 275 PRs, with 125 PRs lacking tonsillolith and 150 PRs having tonsillolith. ResNet and EfficientNet CNN models were assessed during the model selection process. An evaluation was conducted to analyze the learning capacity, intricacy, and compatibility of each model with the problem at hand. The effectiveness of the models was evaluated using accuracy, recall, precision, and F1 score measures following the training phase. Both the ResNet18 and EfficientNetB0 models were able to differentiate between tonsillolith-present and tonsillolith-absent conditions with an average accuracy of 89%. ResNet101 demonstrated underperformance when contrasted with other models. EfficientNetB1 exhibits satisfactory accuracy in both categories. The EfficientNetB0 model exhibits a 93% precision, 87% recall, 90% F1 score, and 89% accuracy. This study indicates that implementing AI-powered deep learning techniques would significantly improve the clinical diagnosis of tonsilloliths.

Enhancing automated detection and classification of dementia in individuals with cognitive impairment using artificial intelligence techniques.

Alotaibi SD, Alharbi AAK

pubmed logopapersJul 9 2025
Dementia is a degenerative and chronic disorder, increasingly prevalent among older adults, posing significant challenges in providing appropriate care. As the number of dementia cases continues to rise, delivering optimal care becomes more complex. Machine learning (ML) plays a crucial role in addressing this challenge by utilizing medical data to enhance care planning and management for individuals at risk of various types of dementia. Magnetic resonance imaging (MRI) is a commonly used method for analyzing neurological disorders. Recent evidence highlights the benefits of integrating artificial intelligence (AI) techniques with MRI, significantly enhancing the diagnostic accuracy for different forms of dementia. This paper explores the use of AI in the automated detection and classification of dementia, aiming to streamline early diagnosis and improve patient outcomes. Integrating ML models into clinical practice can transform dementia care by enabling early detection, personalized treatment plans, and more effectual monitoring of disease progression. In this study, an Enhancing Automated Detection and Classification of Dementia in Thinking Inability Persons using Artificial Intelligence Techniques (EADCD-TIPAIT) technique is presented. The goal of the EADCD-TIPAIT technique is for the detection and classification of dementia in individuals with cognitive impairment using MRI imaging. The EADCD-TIPAIT method performs preprocessing to scale the input data using z-score normalization to obtain this. Next, the EADCD-TIPAIT technique performs a binary greylag goose optimization (BGGO)-based feature selection approach to efficiently identify relevant features that distinguish between normal and dementia-affected brain regions. In addition, the wavelet neural network (WNN) classifier is employed to detect and classify dementia. Finally, the improved salp swarm algorithm (ISSA) is implemented to choose the WNN technique's hyperparameters optimally. The stimulation of the EADCD-TIPAIT technique is examined under a Dementia prediction dataset. The performance validation of the EADCD-TIPAIT approach portrayed a superior accuracy value of 95.00% under diverse measures.

Applicability and performance of convolutional neural networks for the identification of periodontal bone loss in periapical radiographs: a scoping review.

Putra RH, Astuti ER, Nurrachman AS, Savitri Y, Vadya AV, Khairunisa ST, Iikubo M

pubmed logopapersJul 9 2025
The study aimed to review the applicability and performance of various Convolutional Neural Network (CNN) models for the identification of periodontal bone loss (PBL) in digital periapical radiographs achieved through classification, detection, and segmentation approaches. We searched the PubMed, IEEE Xplore, and SCOPUS databases for articles published up to June 2024. After the selection process, a total of 11 studies were included in this review. The reviewed studies demonstrated that CNNs have a significant potential application for automatic identification of PBL on periapical radiographs through classification and segmentation approaches. CNN architectures can be utilized to classify the presence or absence of PBL, the severity or degree of PBL, and PBL area segmentation. CNN showed a promising performance for PBL identification on periapical radiographs. Future research should focus on dataset preparation, proper selection of CNN architecture, and robust performance evaluation to improve the model. Utilizing an optimized CNN architecture is expected to assist dentists by providing accurate and efficient identification of PBL.

MRI-based interpretable clinicoradiological and radiomics machine learning model for preoperative prediction of pituitary macroadenomas consistency: a dual-center study.

Liang M, Wang F, Yang Y, Wen L, Wang S, Zhang D

pubmed logopapersJul 9 2025
To establish an interpretable and non-invasive machine learning (ML) model using clinicoradiological predictors and magnetic resonance imaging (MRI) radiomics features to predict the consistency of pituitary macroadenomas (PMAs) preoperatively. Total 350 patients with PMA (272 from Xinqiao Hospital of Army Medical University and 78 from Daping Hospital of Army Medical University) were stratified and randomly divided into training and test cohorts in a 7:3 ratio. The tumor consistency was classified as soft or firm. Clinicoradiological predictors were examined utilizing univariate and multivariate regression analyses. Radiomics features were selected employing the minimum redundancy maximum relevance (mRMR) and least absolute shrinkage and selection operator (LASSO) algorithms. Logistic regression (LR) and random forest (RF) classifiers were applied to construct the models. Receiver operating characteristic (ROC) curves and decision curve analyses (DCA) were performed to compare and validate the predictive capacities of the models. A comparative study of the area under the curve (AUC), accuracy (ACC), sensitivity (SEN), and specificity (SPE) was performed. The Shapley additive explanation (SHAP) was applied to investigate the optimal model's interpretability. The combined model predicted the PMAs' consistency more effectively than the clinicoradiological and radiomics models. Specifically, the LR-combined model displayed optimal prediction performance (test cohort: AUC = 0.913; ACC = 0.840). The SHAP-based explanation of the LR-combined model suggests that the wavelet-transformed and Laplacian of Gaussian (LoG) filter features extracted from T<sub>2</sub>WI and CE-T<sub>1</sub>WI occupy a dominant position. Meanwhile, the skewness of the original first-order features extracted from T<sub>2</sub>WI (T<sub>2</sub>WI_original_first-order_Skewness) demonstrated the most substantial contribution. An interpretable machine learning model incorporating clinicoradiological predictors and multiparametric MRI (mpMRI)-based radiomics features may predict PMAs consistency, enabling tailored and precise therapies for patients with PMA.

Prediction of Early Neoadjuvant Chemotherapy Response of Breast Cancer through Deep Learning-based Pharmacokinetic Quantification of DCE MRI.

Wu C, Wang L, Wang N, Shiao S, Dou T, Hsu YC, Christodoulou AG, Xie Y, Li D

pubmed logopapersJul 9 2025
<i>"Just Accepted" papers have undergone full peer review and have been accepted for publication in <i>Radiology: Artificial Intelligence</i>. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content.</i> Purpose To improve the generalizability of pathologic complete response (pCR) prediction following neoadjuvant chemotherapy using deep learning (DL)-based retrospective pharmacokinetic quantification (RoQ) of early-treatment dynamic contrast-enhanced (DCE) MRI. Materials and Methods This multicenter retrospective study included breast MRI data from four publicly available datasets of patients with breast cancer acquired from May 2002 to November 2016. RoQ was performed using a previously developed DL model for clinical multiphasic DCE-MRI datasets. Radiomic analysis was performed on RoQ maps and conventional enhancement maps. These data, together with clinicopathologic variables and shape-based radiomic analysis, were subsequently applied in pCR prediction using logistic regression. Prediction performance was evaluated by area under the receiver operating characteristic curve (AUC). Results A total of 1073 female patients with breast cancer were included. The proposed method showed improved consistency and generalizability compared with the reference method, achieving higher AUCs across external datasets (0.82 [CI: 0.72-0.91], 0.75 [CI: 0.71-0.79], and 0.77 [CI: 0.66-0.86] for Datasets A2, B, and C, respectively). On Dataset A2 (from the same study as the training dataset), there was no significant difference in performance between the proposed method and reference method (<i>P</i> = .80). Notably, on the combined external datasets, the proposed method significantly outperformed the reference method (AUC: 0.75 [CI: 0.72- 0.79] vs 0.71 [CI: 0.68-0.76], <i>P</i> = .003). Conclusion This work offers a novel approach to improve the generalizability and predictive accuracy of pCR response in breast cancer across diverse datasets, achieving higher and more consistent AUC scores than existing methods. ©RSNA, 2025.

Development of Artificial Intelligence-Assisted Lumbar and Femoral BMD Estimation System Using Anteroposterior Lumbar X-Ray Images.

Moro T, Yoshimura N, Saito T, Oka H, Muraki S, Iidaka T, Tanaka T, Ono K, Ishikura H, Wada N, Watanabe K, Kyomoto M, Tanaka S

pubmed logopapersJul 9 2025
The early detection and treatment of osteoporosis and prevention of fragility fractures are urgent societal issues. We developed an artificial intelligence-assisted diagnostic system that estimated not only lumbar bone mineral density but also femoral bone mineral density from anteroposterior lumbar X-ray images. We evaluated the performance of lumbar and femoral bone mineral density estimations and the osteoporosis classification accuracy of an artificial intelligence-assisted diagnostic system using lumbar X-ray images from a population-based cohort. The artificial neural network consisted of a deep neural network for estimating lumbar and femoral bone mineral density values and classifying lumbar X-ray images into osteoporosis categories. The deep neural network was built by training dual-energy X-ray absorptiometry-derived lumbar and femoral bone mineral density values as the ground truth of the training data and preprocessed X-ray images. Five-fold cross-validation was performed to evaluate the accuracy of the estimated BMD. A total of 1454 X-ray images from 1454 participants were analyzed using the artificial neural network. For the bone mineral density estimation performance, the mean absolute errors were 0.076 g/cm<sup>2</sup> for the lumbar and 0.071 g/cm<sup>2</sup> for the femur between dual-energy X-ray absorptiometry-derived and artificial intelligence-estimated bone mineral density values. The classification performances for the lumbar and femur of patients with osteopenia, in terms of sensitivity, were 86.4% and 80.4%, respectively, and the respective specificities were 84.1% and 76.3%. CLINICAL SIGNIFICANCE: The system was able to estimate the bone mineral density and classify the osteoporosis category of not only patients in clinics or hospitals but also of general inhabitants.
Page 10 of 1291284 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.