Sort by:
Page 1 of 219 results
Next

A generalizable diffusion framework for 3D low-dose and few-view cardiac SPECT imaging.

Xie H, Gan W, Ji W, Chen X, Alashi A, Thorn SL, Zhou B, Liu Q, Xia M, Guo X, Liu YH, An H, Kamilov US, Wang G, Sinusas AJ, Liu C

pubmed logopapersJul 30 2025
Myocardial perfusion imaging using SPECT is widely utilized to diagnose coronary artery diseases, but image quality can be negatively affected in low-dose and few-view acquisition settings. Although various deep learning methods have been introduced to improve image quality from low-dose or few-view SPECT data, previous approaches often fail to generalize across different acquisition settings, limiting realistic applicability. This work introduced DiffSPECT-3D, a diffusion framework for 3D cardiac SPECT imaging that effectively adapts to different acquisition settings without requiring further network re-training or fine-tuning. Using both image and projection data, a consistency strategy is proposed to ensure that diffusion sampling at each step aligns with the low-dose/few-view projection measurements, the image data, and the scanner geometry, thus enabling generalization to different low-dose/few-view settings. Incorporating anatomical spatial information from CT and total variation constraint, we proposed a 2.5D conditional strategy to allow DiffSPECT-3D to observe 3D contextual information from the entire image volume, addressing the 3D memory/computational issues in diffusion model. We extensively evaluated the proposed method on 1,325 clinical <sup>99m</sup>Tc tetrofosmin stress/rest studies from 795 patients. Each study was reconstructed into 5 different low-count levels and 5 different projection few-view levels for model evaluations, ranging from 1% to 50% and from 1 view to 9 view, respectively. Validated against cardiac catheterization results and diagnostic review from nuclear cardiologists, the presented results show the potential to achieve low-dose and few-view SPECT imaging without compromising clinical performance. Additionally, DiffSPECT-3D could be directly applied to full-dose SPECT images to further improve image quality, especially in a low-dose stress-first cardiac SPECT imaging protocol.

CT-free kidney single-photon emission computed tomography for glomerular filtration rate.

Kwon K, Oh D, Kim JH, Yoo J, Lee WW

pubmed logopapersJul 25 2025
This study explores an artificial intelligence-based approach to perform CT-free quantitative SPECT for kidney imaging using Tc-99 m DTPA, aiming to estimate glomerular filtration rate (GFR) without relying on CT. A total of 1000 SPECT/CT scans were used to train and test a deep-learning model that segments kidneys automatically based on synthetic attenuation maps (µ-maps) derived from SPECT alone. The model employed a residual U-Net with edge attention and was optimized using windowing-maximum normalization and a generalized Dice similarity loss function. Performance evaluation showed strong agreement with manual CT-based segmentation, achieving a Dice score of 0.818 ± 0.056 and minimal volume differences of 17.9 ± 43.6 mL (mean ± standard deviation). An additional set of 50 scans confirmed that GFR calculated from the AI-based CT-free SPECT (109.3 ± 17.3 mL/min) was nearly identical to the conventional SPECT/CT method (109.2 ± 18.4 mL/min, p = 0.9396). This CT-free method reduced radiation exposure by up to 78.8% and shortened segmentation time from 40 min to under 1 min. The findings suggest that AI can effectively replace CT in kidney SPECT imaging, maintaining quantitative accuracy while improving safety and efficiency.

MSA-Net: a multi-scale and adversarial learning network for segmenting bone metastases in low-resolution SPECT imaging.

Wu Y, Lin Q, He Y, Zeng X, Cao Y, Man Z, Liu C, Hao Y, Cai Z, Ji J, Huang X

pubmed logopapersJul 24 2025
Single-photon emission computed tomography (SPECT) plays a crucial role in detecting bone metastases from lung cancer. However, its low spatial resolution and lesion similarity to benign structures present significant challenges for accurate segmentation, especially for lesions of varying sizes. We propose a deep learning-based segmentation framework that integrates conditional adversarial learning with a multi-scale feature extraction generator. The generator employs cascade dilated convolutions, multi-scale modules, and deep supervision, while the discriminator utilizes multi-scale L1 loss computed on image-mask pairs to guide segmentation learning. The proposed model was evaluated on a dataset of 286 clinically annotated SPECT scintigrams. It achieved a Dice Similarity Coefficient (DSC) of 0.6671, precision of 0.7228, and recall of 0.6196 - outperforming both classical and recent adversarial segmentation models in multi-scale lesion detection, especially for small and clustered lesions. Our results demonstrate that the integration of multi-scale feature learning with adversarial supervision significantly improves the segmentation of bone metastasis in SPECT imaging. This approach shows potential for clinical decision support in the management of lung cancer.

AI-enhanced patient-specific dosimetry in I-131 planar imaging with a single oblique view.

Jalilifar M, Sadeghi M, Emami-Ardekani A, Bitarafan-Rajabi A, Geravand K, Geramifar P

pubmed logopapersJul 8 2025
This study aims to enhance the dosimetry accuracy in <sup>131</sup>I planar imaging by utilizing a single oblique view and Monte Carlo (MC) validated dose point kernels (DPKs) alongside the integration of artificial intelligence (AI) for accurate dose prediction within planar imaging. Forty patients with thyroid cancers post-thyroidectomy surgery and 30 with neuroendocrine tumors underwent planar and SPECT/CT imaging. Using whole-body (WB) planar images with an additional oblique view, organ thicknesses were estimated. DPKs and organ-specific S-values were used to estimate the absorbed doses. Four AI algorithms- multilayer perceptron (MLP), linear regression, support vector regression model, decision tree, convolution neural network, and U-Net were used for dose estimation. Planar image counts, body thickness, patient BMI, age, S-values, and tissue attenuation coefficients were imported as input into the AI algorithm. To provide the ground truth, the CT-based segmentation generated binary masks for each organ, and the corresponding SPECT images were used for GATE MC dosimetry. The MLP-predicted dose values across all organs represented superior performance with the lowest mean absolute error in the liver but higher in the spleen and salivary glands. Notably, MLP-based dose estimations closely matched ground truth data with < 15% differences in most tissues. The MLP-estimated dose values present a robust patient-specific dosimetry approach capable of swiftly predicting absorbed doses in different organs using WB planar images and a single oblique view. This approach facilitates the implementation of 2D planar imaging as a pre-therapeutic technique for a more accurate assessment of the administrated activity.

A Novel Two-step Classification Approach for Differentiating Bone Metastases From Benign Bone Lesions in SPECT/CT Imaging.

Xie W, Wang X, Liu M, Mai L, Shangguan H, Pan X, Zhan Y, Zhang J, Wu X, Dai Y, Pei Y, Zhang G, Yao Z, Wang Z

pubmed logopapersJul 2 2025
This study aims to develop and validate a novel two-step deep learning framework for the automated detection, segmentation, and classification of bone metastases in SPECT/CT imaging, accurately distinguishing malignant from benign lesions to improve early diagnosis and facilitate personalized treatment planning. A segmentation model, BL-Seg, was developed to automatically segment lesion regions in SPECT/CT images, utilizing a multi-scale attention fusion module and a triple attention mechanism to capture metabolic variations and refine lesion boundaries. A radiomics-based ensemble learning classifier was subsequently applied to integrate metabolic and texture features for benign-malignant differentiation. The framework was trained and evaluated using a proprietary dataset of SPECT/CT images collected from our institution. Performance metrics, including Dice coefficient, sensitivity, specificity, and AUC, were compared against conventional methods. The study utilized a dataset of SPECT/CT cases from our institution, divided into training and test sets acquired on Siemens SPECT/CT scanners with minor protocol differences. BL-Seg achieved a Dice coefficient of 0.8797, surpassing existing segmentation models. The classification model yielded an AUC of 0.8502, with improved sensitivity and specificity compared to traditional approaches. The proposed framework, with BL-Seg's automated lesion segmentation, demonstrates superior accuracy in detecting, segmenting, and classifying bone metastases, offering a robust tool for early diagnosis and personalized treatment planning in metastatic bone disease.

Artificial intelligence-powered coronary artery disease diagnosis from SPECT myocardial perfusion imaging: a comprehensive deep learning study.

Hajianfar G, Gharibi O, Sabouri M, Mohebi M, Amini M, Yasemi MJ, Chehreghani M, Maghsudi M, Mansouri Z, Edalat-Javid M, Valavi S, Bitarafan Rajabi A, Salimi Y, Arabi H, Rahmim A, Shiri I, Zaidi H

pubmed logopapersJul 1 2025
Myocardial perfusion imaging (MPI) using single-photon emission computed tomography (SPECT) is a well-established modality for noninvasive diagnostic assessment of coronary artery disease (CAD). However, the time-consuming and experience-dependent visual interpretation of SPECT images remains a limitation in the clinic. We aimed to develop advanced models to diagnose CAD using different supervised and semi-supervised deep learning (DL) algorithms and training strategies, including transfer learning and data augmentation, with SPECT-MPI and invasive coronary angiography (ICA) as standard of reference. A total of 940 patients who underwent SPECT-MPI were enrolled (281 patients included ICA). Quantitative perfusion SPECT (QPS) was used to extract polar maps of rest and stress states. We defined two different tasks, including (1) Automated CAD diagnosis with expert reader (ER) assessment of SPECT-MPI as reference, and (2) CAD diagnosis from SPECT-MPI based on reference ICA reports. In task 2, we used 6 strategies for training DL models. We implemented 13 different DL models along with 4 input types with and without data augmentation (WAug and WoAug) to train, validate, and test the DL models (728 models). One hundred patients with ICA as standard of reference (the same patients in task 1) were used to evaluate models per vessel and per patient. Metrics, such as the area under the receiver operating characteristics curve (AUC), accuracy, sensitivity, specificity, precision, and balanced accuracy were reported. DeLong and pairwise Wilcoxon rank sum tests were respectively used to compare models and strategies after 1000 bootstraps on the test data for all models. We also compared the performance of our best DL model to ER's diagnosis. In task 1, DenseNet201 Late Fusion (AUC = 0.89) and ResNet152V2 Late Fusion (AUC = 0.83) models outperformed other models in per-vessel and per-patient analyses, respectively. In task 2, the best models for CAD prediction based on ICA were Strategy 3 (a combination of ER- and ICA-based diagnosis in train data), WoAug InceptionResNetV2 EarlyFusion (AUC = 0.71), and Strategy 5 (semi-supervised approach) WoAug ResNet152V2 EarlyFusion (AUC = 0.77) in per-vessel and per-patient analyses, respectively. Moreover, saliency maps showed that models could be helpful for focusing on relevant spots for decision making. Our study confirmed the potential of DL-based analysis of SPECT-MPI polar maps in CAD diagnosis. In the automation of ER-based diagnosis, models' performance was promising showing accuracy close to expert-level analysis. It demonstrated that using different strategies of data combination, such as including those with and without ICA, along with different training methods, like semi-supervised learning, can increase the performance of DL models. The proposed DL models could be coupled with computer-aided diagnosis systems and be used as an assistant to nuclear medicine physicians to improve their diagnosis and reporting, but only in the LAD territory. Not applicable.

CT-free attenuation and Monte-Carlo based scatter correction-guided quantitative <sup>90</sup>Y-SPECT imaging for improved dose calculation using deep learning.

Mansouri Z, Salimi Y, Wolf NB, Mainta I, Zaidi H

pubmed logopapersJul 1 2025
This work aimed to develop deep learning (DL) models for CT-free attenuation and Monte Carlo-based scatter correction (AC, SC) in quantitative <sup>90</sup>Y SPECT imaging for improved dose calculation. Data of 190 patients who underwent <sup>90</sup>Y selective internal radiation therapy (SIRT) with glass microspheres was studied. Voxel-level dosimetry was performed on uncorrected and corrected SPECT images using the local energy deposition method. Three deep learning models were trained individually for AC, SC, and joint ASC using a modified 3D shifted-window UNet Transformer (Swin UNETR) architecture. Corrected and unorrected dose maps served as reference and as inputs, respectively. The data was split into train set (~ 80%) and unseen test set (~ 20%). Training was conducted in a five-fold cross-validation scheme. The trained models were tested on the unseen test set. The model's performance was thoroughly evaluated by comparing organ- and voxel-level dosimetry results between the reference and DL-generated dose maps on the unseen test dataset. The voxel and organ-level evaluations also included Gamma analysis with three different distances to agreement (DTA (mm)) and dose difference (DD (%)) criteria to explore suitable criteria in SIRT dosimetry using SPECT. The average ± SD of the voxel-level quantitative metrics for AC task, are mean error (ME (Gy)): -0.026 ± 0.06, structural similarity index (SSIM (%)): 99.5 ± 0.25, and peak signal to noise ratio (PSNR (dB)): 47.28 ± 3.31. These values for SC task are - 0.014 ± 0.05, 99.88 ± 0.099, 55.9 ± 4, respectively. For ASC task, these values are as follows: -0.04 ± 0.06, 99.57 ± 0.33, 47.97 ± 3.6, respectively. The results of voxel level gamma evaluations with three different criteria, namely "DTA: 4.79, DD: 1%", "DTA:10 mm, DD: 5%", and "DTA: 15 mm, DD:10%" were around 98%. The mean absolute error (MAE (Gy)) for tumor and whole normal liver across tasks are as follows: 7.22 ± 5.9 and 1.09 ± 0.86 for AC, 8 ± 9.3 and 0.9 ± 0.8 for SC, and 11.8 ± 12.02 and 1.3 ± 0.98 for ASC, respectively. We developed multiple models for three different clinically scenarios, namely AC, SC, and ASC using the patient-specific Monte Carlo scatter corrected and CT-based attenuation corrected images. These task-specific models could be beneficial to perform the essential corrections where the CT images are either not available or not reliable due to misalignment, after training with a larger dataset.

Comparison of CNNs and Transformer Models in Diagnosing Bone Metastases in Bone Scans Using Grad-CAM.

Pak S, Son HJ, Kim D, Woo JY, Yang I, Hwang HS, Rim D, Choi MS, Lee SH

pubmed logopapersJul 1 2025
Convolutional neural networks (CNNs) have been studied for detecting bone metastases on bone scans; however, the application of ConvNeXt and transformer models has not yet been explored. This study aims to evaluate the performance of various deep learning models, including the ConvNeXt and transformer models, in diagnosing metastatic lesions from bone scans. We retrospectively analyzed bone scans from patients with cancer obtained at 2 institutions: the training and validation sets (n=4626) were from Hospital 1 and the test set (n=1428) was from Hospital 2. The deep learning models evaluated included ResNet18, the Data-Efficient Image Transformer (DeiT), the Vision Transformer (ViT Large 16), the Swin Transformer (Swin Base), and ConvNeXt Large. Gradient-weighted class activation mapping (Grad-CAM) was used for visualization. Both the validation set and the test set demonstrated that the ConvNeXt large model (0.969 and 0.885, respectively) exhibited the best performance, followed by the Swin Base model (0.965 and 0.840, respectively), both of which significantly outperformed ResNet (0.892 and 0.725, respectively). Subgroup analyses revealed that all the models demonstrated greater diagnostic accuracy for patients with polymetastasis compared with those with oligometastasis. Grad-CAM visualization revealed that the ConvNeXt Large model focused more on identifying local lesions, whereas the Swin Base model focused on global areas such as the axial skeleton and pelvis. Compared with traditional CNN and transformer models, the ConvNeXt model demonstrated superior diagnostic performance in detecting bone metastases from bone scans, especially in cases of polymetastasis, suggesting its potential in medical image analysis.

Limited-angle SPECT image reconstruction using deep image prior.

Hori K, Hashimoto F, Koyama K, Hashimoto T

pubmed logopapersJun 30 2025
[Objective] In single-photon emission computed tomography (SPECT) image reconstruction, limited-angle conditions lead to a loss of frequency components, which distort the reconstructed tomographic image along directions corresponding to the non-collected projection angle range. Although conventional iterative image reconstruction methods have been used to improve the reconstructed images in limited-angle conditions, the image quality is still unsuitable for clinical use. We propose a limited-angle SPECT image reconstruction method that uses an end-to-end deep image prior (DIP) framework to improve reconstructed image quality.&#xD;[Approach] The proposed limited-angle SPECT image reconstruction is an end-to-end DIP framework which incorporates a forward projection model into the loss function to optimise the neural network. By also incorporating a binary mask that indicates whether each data point in the measured projection data has been collected, the proposed method restores the non-collected projection data and reconstructs a less distorted image.&#xD;[Main results] The proposed method was evaluated using 20 numerical phantoms and clinical patient data. In numerical simulations, the proposed method outperformed existing back-projection-based methods in terms of peak signal-to-noise ratio and structural similarity index measure. We analysed the reconstructed tomographic images in the frequency domain using an object-specific modulation transfer function, in simulations and on clinical patient data, to evaluate the response of the reconstruction method to different frequencies of the object. The proposed method significantly improved the response to almost all spatial frequencies, even in the non-collected projection angle range. The results demonstrate that the proposed method reconstructs a less distorted tomographic image.&#xD;[Significance] The proposed end-to-end DIP-based reconstruction method restores lost frequency components and mitigates image distortion under limited-angle conditions by incorporating a binary mask into the loss function.

Development and in silico imaging trial evaluation of a deep-learning-based transmission-less attenuation compensation method for DaT SPECT

Zitong Yu, Md Ashequr Rahman, Zekun Li, Chunwei Ying, Hongyu An, Tammie L. S. Benzinger, Richard Laforest, Jingqin Luo, Scott A. Norris, Abhinav K. Jha

arxiv logopreprintJun 25 2025
Quantitative measures of dopamine transporter (DaT) uptake in caudate, putamen, and globus pallidus derived from DaT-single-photon emission computed tomography (SPECT) images are being investigated as biomarkers to diagnose, assess disease status, and track the progression of Parkinsonism. Reliable quantification from DaT-SPECT images requires performing attenuation compensation (AC), typically with a separate X-ray CT scan. Such CT-based AC (CTAC) has multiple challenges, a key one being the non-availability of X-ray CT component on many clinical SPECT systems. Even when a CT is available, the additional CT scan leads to increased radiation dose, costs, and complexity, potential quantification errors due to SPECT-CT misalignment, and higher training and regulatory requirements. To overcome the challenges with the requirement of a CT scan for AC in DaT SPECT, we propose a deep learning (DL)-based transmission-less AC method for DaT-SPECT (DaT-CTLESS). An in silico imaging trial, titled ISIT-DaT, was designed to evaluate the performance of DaT-CTLESS on the regional uptake quantification task. We observed that DaT-CTLESS yielded a significantly higher correlation with CTAC than that between UAC and CTAC on the regional DaT uptake quantification task. Further, DaT-CLTESS had an excellent agreement with CTAC on this task, significantly outperformed UAC in distinguishing patients with normal versus reduced putamen SBR, yielded good generalizability across two scanners, was generally insensitive to intra-regional uptake heterogeneity, demonstrated good repeatability, exhibited robust performance even as the size of the training data was reduced, and generally outperformed the other considered DL methods on the task of quantifying regional uptake across different training dataset sizes. These results provide a strong motivation for further clinical evaluation of DaT-CTLESS.
Page 1 of 219 results
Show
per page
12»

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.