Sort by:
Page 1 of 19190 results
Next

SurgPointTransformer: transformer-based vertebra shape completion using RGB-D imaging.

Massalimova A, Liebmann F, Jecklin S, Carrillo F, Farshad M, Fürnstahl P

pubmed logopapersDec 1 2025
State-of-the-art computer- and robot-assisted surgery systems rely on intraoperative imaging technologies such as computed tomography and fluoroscopy to provide detailed 3D visualizations of patient anatomy. However, these methods expose both patients and clinicians to ionizing radiation. This study introduces a radiation-free approach for 3D spine reconstruction using RGB-D data. Inspired by the "mental map" surgeons form during procedures, we present SurgPointTransformer, a shape completion method that reconstructs unexposed spinal regions from sparse surface observations. The method begins with a vertebra segmentation step that extracts vertebra-level point clouds for subsequent shape completion. SurgPointTransformer then uses an attention mechanism to learn the relationship between visible surface features and the complete spine structure. The approach is evaluated on an <i>ex vivo</i> dataset comprising nine samples, with CT-derived data used as ground truth. SurgPointTransformer significantly outperforms state-of-the-art baselines, achieving a Chamfer distance of 5.39 mm, an F-score of 0.85, an Earth mover's distance of 11.00 and a signal-to-noise ratio of 22.90 dB. These results demonstrate the potential of our method to reconstruct 3D vertebral shapes without exposing patients to ionizing radiation. This work contributes to the advancement of computer-aided and robot-assisted surgery by enhancing system perception and intelligence.

Application of Artificial Intelligence in rheumatic disease classification: an example of ankylosing spondylitis severity inspection model.

Chen CW, Tsai HH, Yeh CY, Yang CK, Tsou HK, Leong PY, Wei JC

pubmed logopapersDec 1 2025
The development of the Artificial Intelligence (AI)-based severity inspection model for ankylosing spondylitis (AS) could support health professionals to rapidly assess the severity of the disease, enhance proficiency, and reduce the demands of human resources. This paper aims to develop an AI-based severity inspection model for AS using patients' X-ray images and modified Stoke Ankylosing Spondylitis Spinal Score (mSASSS). The numerical simulation with AI is developed following the progress of data preprocessing, building and testing the model, and then the model. The training data is preprocessed by inviting three experts to check the X-ray images of 222 patients following the Gold Standard. The model is then developed through two stages, including keypoint detection and mSASSS evaluation. The two-stage AI-based severity inspection model for AS was developed to automatically detect spine points and evaluate mSASSS scores. At last, the data obtained from the developed model was compared with those from experts' assessment to analyse the accuracy of the model. The study was conducted in accordance with the ethical principles outlined in the Declaration of Helsinki. The spine point detection at the first stage achieved 1.57 micrometres in mean error distance with the ground truth, and the second stage of the classification network can reach 0.81 in mean accuracy. The model can correctly identify 97.4% patches belonging to mSASSS score 3, while those belonging to score 0 can still be classified into scores 1 or 2. The automatic severity inspection model for AS developed in this paper is accurate and can support health professionals in rapidly assessing the severity of AS, enhancing assessment proficiency, and reducing the demands of human resources.

Intermuscular adipose tissue and lean muscle mass assessed with MRI in people with chronic back pain in Germany: a retrospective observational study.

Ziegelmayer S, Häntze H, Mertens C, Busch F, Lemke T, Kather JN, Truhn D, Kim SH, Wiestler B, Graf M, Kader A, Bamberg F, Schlett CL, Weiss JB, Schulz-Menger J, Ringhof S, Can E, Pischon T, Niendorf T, Lammert J, Schulze M, Keil T, Peters A, Hadamitzky M, Makowski MR, Adams L, Bressem K

pubmed logopapersJul 1 2025
Chronic back pain (CBP) affects over 80 million people in Europe, contributing to substantial healthcare costs and disability. Understanding modifiable risk factors, such as muscle composition, may aid in prevention and treatment. This study investigates the association between lean muscle mass (LMM) and intermuscular adipose tissue (InterMAT) with CBP using noninvasive whole-body magnetic resonance imaging (MRI). This cross-sectional analysis used whole-body MRI data from 30,868 participants in the German National Cohort (NAKO), collected between 1 May 2014 and 1 September 2019. CBP was defined as back pain persisting >3 months. LMM and InterMAT were quantified via MRI-based muscle segmentations using a validated deep learning model. Associations were analyzed using mixed logistic regression, adjusting for age, sex, diabetes, dyslipidemia, osteoporosis, osteoarthritis, physical activity, and study site. Among 27,518 participants (n = 12,193/44.3% female, n = 14,605/55.7% male; median age 49 years IQR 41; 57), 21.8% (n = 6003; n = 2999/50.0% female, n = 3004/50% male; median age 53 years IQR 46; 60) reported CBP, compared to 78.2% (n = 21,515; n = 9194/42.7% female, n = 12,321/57.3% male; median age 48 years IQR 39; 56) who did not. CBP prevalence was highest in those with low (<500 MET min/week) or high (>5000 MET min/week) self-reported physical activity levels (24.6% (n = 10,892) and 22.0% (n = 3800), respectively) compared to moderate (500-5000 MET min/week) levels (19.4% (n = 12,826); p < 0.0001). Adjusted analyses revealed that a higher InterMAT (OR 1.22 per 2-unit Z-score; 95% CI 1.13-1.30; p < 0.0001) was associated with an increased likelihood of chronic back pain (CBP), whereas higher lean muscle mass (LMM) (OR 0.87 per 2-unit Z-score; 95% CI 0.79-0.95; p = 0.003) was associated with a reduced likelihood of CBP. Stratified analyses confirmed these associations persisted in individuals with osteoarthritis (OA-CBP LMM: 22.9 cm<sup>3</sup>/kg/m; InterMAT: 7.53% vs OA-No CBP LMM: 24.3 cm<sup>3</sup>/kg/m; InterMAT: 6.96% both p < 0.0001) and osteoporosis (OP-CBP LMM: 20.9 cm<sup>3</sup>/kg/m; InterMAT: 8.43% vs OP-No CBP LMM: 21.3 cm<sup>3</sup>/kg/m; InterMAT: 7.9% p = 0.16 and p = 0.0019). Higher pain intensity (Pain Intensity Numerical Rating Scale ≥4) correlated with lower LMM (2-unit Z-score deviation = OR, 0.63; 95% CI, 0.57-0.70; p < 0.0001) and higher InterMAT (2-unit Z-score deviation = OR, 1.22; 95% CI, 1.13-1.30; p < 0.0001), independent of physical activity, osteoporosis and osteoarthritis. This large, population-based study highlights the associations of InterMAT and LMM with CBP. Given the limitations of the cross-sectional design, our findings can be seen as an impetus for further causal investigations within a broader, multidisciplinary framework to guide future research toward improved prevention and treatment. The NAKO is funded by the Federal Ministry of Education and Research (BMBF) [project funding reference numbers: 01ER1301A/B/C, 01ER1511D, 01ER1801A/B/C/D and 01ER2301A/B/C], federal states of Germany and the Helmholtz Association, the participating universities and the institutes of the Leibniz Association.

Automatic adult age estimation using bone mineral density of proximal femur via deep learning.

Cao Y, Ma Y, Zhang S, Li C, Chen F, Zhang J, Huang P

pubmed logopapersJul 1 2025
Accurate adult age estimation (AAE) is critical for forensic and anthropological applications, yet traditional methods relying on bone mineral density (BMD) face significant challenges due to biological variability and methodological limitations. This study aims to develop an end-to-end Deep Learning (DL) based pipeline for automated AAE using BMD from proximal femoral CT scans. The main objectives are to construct a large-scale dataset of 5151 CT scans from real-world clinical and cadaver cohorts, fine-tune the Segment Anything Model (SAM) for accurate femoral bone segmentation, and evaluate multiple convolutional neural networks (CNNs) for precise age estimation based on segmented BMD data. Model performance was assessed through cross-validation, internal clinical testing, and external post-mortem validation. SAM achieved excellent segmentation performance with a Dice coefficient of 0.928 and an average intersection over union (mIoU) of 0.869. The CNN models achieved an average mean absolute error (MAE) of 5.20 years in cross-validation (male: 5.72; female: 4.51), which improved to 4.98 years in the independent clinical test set (male: 5.32; female: 4.56). External validation on the post-mortem dataset revealed an MAE of 6.91 years, with 6.97 for males and 6.69 for females. Ensemble learning further improved accuracy, reducing MAE to 4.78 years (male: 5.12; female: 4.35) in the internal test set, and 6.58 years (male: 6.64; female: 6.37) in the external validation set. These findings highlight the feasibility of dl-driven AAE and its potential for forensic applications, offering a fully automated framework for robust age estimation.

A Minimal Annotation Pipeline for Deep Learning Segmentation of Skeletal Muscles.

Baudin PY, Balsiger F, Beck L, Boisserie JM, Jouan S, Marty B, Reyngoudt H, Scheidegger O

pubmed logopapersJul 1 2025
Translating quantitative skeletal muscle MRI biomarkers into clinics requires efficient automatic segmentation methods. The purpose of this work is to investigate a simple yet effective iterative methodology for building a high-quality automatic segmentation model while minimizing the manual annotation effort. We used a retrospective database of quantitative MRI examinations (n = 70) of healthy and pathological thighs for training a nnU-Net segmentation model. Healthy volunteers and patients with various neuromuscular diseases, broadly categorized as dystrophic, inflammatory, neurogenic, and unlabeled NMDs. We designed an iterative procedure, progressively adding cases to the training set and using a simple visual five-level rating scale to judge the validity of generated segmentations for clinical use. On an independent test set (n = 20), we assessed the quality of the segmentation in 13 individual thigh muscles using standard segmentation metrics-dice coefficient (DICE) and 95% Hausdorff distance (HD95)-and quantitative biomarkers-cross-sectional area (CSA), fat fraction (FF), and water-T1/T2. We obtained high-quality segmentations (DICE = 0.88 ± 0.15/0.86 ± 0.14, HD95 = 6.35 ± 12.33/6.74 ± 11.57 mm), comparable to recent works, although with a smaller training set (n = 30). Inter-rater agreement on the five-level scale was fair to moderate but showed progressive improvement of the segmentation model along with the iterations. We observed limited differences from manually delineated segmentations on the quantitative outcomes (MAD: CSA = 65.2 mm<sup>2</sup>, FF = 1%, water-T1 = 8.4 ms, water-T2 = 0.35 ms), with variability comparable to manual delineations.

A multi-task neural network for full waveform ultrasonic bone imaging.

Li P, Liu T, Ma H, Li D, Liu C, Ta D

pubmed logopapersJul 1 2025
It is a challenging task to use ultrasound for bone imaging, as the bone tissue has a complex structure with high acoustic impedance and speed-of-sound (SOS). Recently, full waveform inversion (FWI) has shown promising imaging for musculoskeletal tissues. However, the FWI showed a limited ability and tended to produce artifacts in bone imaging because the inversion process would be more easily trapped in local minimum for bone tissue with a large discrepancy in SOS distribution between bony and soft tissues. In addition, the application of FWI required a high computational burden and relatively long iterations. The objective of this study was to achieve high-resolution ultrasonic imaging of bone using a deep learning-based FWI approach. In this paper, we proposed a novel network named CEDD-Unet. The CEDD-Unet adopts a Dual-Decoder architecture, with the first decoder tasked with reconstructing the SOS model, and the second decoder tasked with finding the main boundaries between bony and soft tissues. To effectively capture multi-scale spatial-temporal features from ultrasound radio frequency (RF) signals, we integrated a Convolutional LSTM (ConvLSTM) module. Additionally, an Efficient Multi-scale Attention (EMA) module was incorporated into the encoder to enhance feature representation and improve reconstruction accuracy. Using the ultrasonic imaging modality with a ring array transducer, the performance of CEDD-Unet was tested on the SOS model datasets from human bones (noted as Dataset1) and mouse bones (noted as Dataset2), and compared with three classic reconstruction architectures (Unet, Unet++, and Att-Unet), four state-of-the-art architecture (InversionNet, DD-Net, UPFWI, and DEFE-Unet). Experiments showed that CEDD-Unet outperforms all competing methods, achieving the lowest MAE of 23.30 on Dataset1 and 25.29 on Dataset2, the highest SSIM of 0.9702 on Dataset1 and 0.9550 on Dataset2, and the highest PSNR of 30.60 dB on Dataset1 and 32.87 dB on Dataset2. Our method demonstrated superior reconstruction quality, with clearer bone boundaries, reduced artifacts, and improved consistency with ground truth. Moreover, CEDD-Unet surpasses traditional FWI by producing sharper skeletal SOS reconstructions, reducing computational cost, and eliminating the reliance for an initial model. Ablation studies further confirm the effectiveness of each network component. The results suggest that CEDD-Unet is a promising deep learning-based FWI method for high-resolution bone imaging, with the potential to reconstruct accurate and sharp-edged skeletal SOS models.

Automated vertebrae identification and segmentation with structural uncertainty analysis in longitudinal CT scans of patients with multiple myeloma.

Madzia-Madzou DK, Jak M, de Keizer B, Verlaan JJ, Minnema MC, Gilhuijs K

pubmed logopapersJul 1 2025
Optimize deep learning-based vertebrae segmentation in longitudinal CT scans of multiple myeloma patients using structural uncertainty analysis. Retrospective CT scans from 474 multiple myeloma patients were divided into train (179 patients, 349 scans, 2005-2011) and test cohort (295 patients, 671 scans, 2012-2020). An enhanced segmentation pipeline was developed on the train cohort. It integrated vertebrae segmentation using an open-source deep learning method (Payer's) with a post-hoc structural uncertainty analysis. This analysis identified inconsistencies, automatically correcting them or flagging uncertain regions for human review. Segmentation quality was assessed through vertebral shape analysis using topology. Metrics included 'identification rate', 'longitudinal vertebral match rate', 'success rate' and 'series success rate' and evaluated across age/sex subgroups. Statistical analysis included McNemar and Wilcoxon signed-rank tests, with p < 0.05 indicating significant improvement. Payer's method achieved an identification rate of 95.8% and success rate of 86.7%. The proposed pipeline automatically improved these metrics to 98.8% and 96.0%, respectively (p < 0.001). Additionally, 3.6% of scans were marked for human inspection, increasing the success rate from 96.0% to 98.8% (p < 0.001). The vertebral match rate increased from 97.0% to 99.7% (p < 0.001), and the series success rate from 80.0% to 95.4% (p < 0.001). Subgroup analysis showed more consistent performance across age and sex groups. The proposed pipeline significantly outperforms Payer's method, enhancing segmentation accuracy and reducing longitudinal matching errors while minimizing evaluation workload. Its uncertainty analysis ensures robust performance, making it a valuable tool for longitudinal studies in multiple myeloma.

Automated Acetabular Defect Reconstruction and Analysis for Revision Total Hip Arthroplasty: A Computational Modeling Study.

Hopkins D, Callary SA, Solomon LB, Lee PVS, Ackland DC

pubmed logopapersJul 1 2025
Revision total hip arthroplasty (rTHA) involving large acetabular defects is associated with high early failure rates, primarily due to cup loosening. Most acetabular defect classification systems used in surgical planning are based on planar radiographs and do not encapsulate three-dimensional geometry and morphology of the acetabular defect. This study aimed to develop an automated computational modeling pipeline for rapid generation of three-dimensional acetabular bone defect geometry. The framework employed artificial neural network segmentation of preoperative pelvic computed tomography (CT) images and statistical shape model generation for defect reconstruction in 60 rTHA patients. Regional acetabular absolute defect volumes (ADV), relative defect volumes (RDV) and defect depths (DD) were calculated and stratified within Paprosky classifications. Defect geometries from the automated modeling pipeline were validated against manually reconstructed models and were found to have a mean dice coefficient of 0.827 and a mean relative volume error of 16.4%. The mean ADV, RDV and DD of classification groups generally increased with defect severity. Except for superior RDV and ADV between 3A and 2A defects, and anterior RDV and DD between 3B and 3A defects, statistically significant differences in ADV, RDV or DD were only found between 3B and 2B-2C defects (p < 0.05). Poor correlations observed between ADV, RDV, and DD within Paprosky classifications suggest that quantitative measures are not unique to each Paprosky grade. The automated modeling tools developed may be useful in surgical planning and computational modeling of rTHA.

Cascade learning in multi-task encoder-decoder networks for concurrent bone segmentation and glenohumeral joint clinical assessment in shoulder CT scans.

Marsilio L, Marzorati D, Rossi M, Moglia A, Mainardi L, Manzotti A, Cerveri P

pubmed logopapersJul 1 2025
Osteoarthritis is a degenerative condition that affects bones and cartilage, often leading to structural changes, including osteophyte formation, bone density loss, and the narrowing of joint spaces. Over time, this process may disrupt the glenohumeral (GH) joint functionality, requiring a targeted treatment. Various options are available to restore joint functions, ranging from conservative management to surgical interventions, depending on the severity of the condition. This work introduces an innovative deep learning framework to process shoulder CT scans. It features the semantic segmentation of the proximal humerus and scapula, the 3D reconstruction of bone surfaces, the identification of the GH joint region, and the staging of three common osteoarthritic-related conditions: osteophyte formation (OS), GH space reduction (JS), and humeroscapular alignment (HSA). Each condition was stratified into multiple severity stages, offering a comprehensive analysis of shoulder bone structure pathology. The pipeline comprised two cascaded CNN architectures: 3D CEL-UNet for segmentation and 3D Arthro-Net for threefold classification. A retrospective dataset of 571 CT scans featuring patients with various degrees of GH osteoarthritic-related pathologies was used to train, validate, and test the pipeline. Root mean squared error and Hausdorff distance median values for 3D reconstruction were 0.22 mm and 1.48 mm for the humerus and 0.24 mm and 1.48 mm for the scapula, outperforming state-of-the-art architectures and making it potentially suitable for a PSI-based shoulder arthroplasty preoperative plan context. The classification accuracy for OS, JS, and HSA consistently reached around 90% across all three categories. The computational time for the entire inference pipeline was less than 15 s, showcasing the framework's efficiency and compatibility with orthopedic radiology practice. The achieved reconstruction and classification accuracy, combined with the rapid processing time, represent a promising advancement towards the medical translation of artificial intelligence tools. This progress aims to streamline the preoperative planning pipeline, delivering high-quality bone surfaces and supporting surgeons in selecting the most suitable surgical approach according to the unique patient joint conditions.
Page 1 of 19190 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.