Sort by:
Page 2 of 768 results

USING ARTIFICIAL INTELLIGENCE TO PREDICT TREATMENT OUTCOMES IN PATIENTS WITH NEUROGENIC OVERACTIVE BLADDER AND MULTIPLE SCLEROSIS

Chang, O., Lee, J., Lane, F., Demetriou, M., Chang, P.

medrxiv logopreprintJun 18 2025
Introduction and ObjectivesMany women with multiple sclerosis (MS) experience neurogenic overactive bladder (NOAB) characterized by urinary frequency, urinary urgency and urgency incontinence. The objective of the study was to create machine learning (ML) models utilizing clinical and imaging data to predict NOAB treatment success stratified by treatment type. MethodsThis was a retrospective cohort study of female patients with diagnosis of NOAB and MS seen at a tertiary academic center from 2017-2022. Clinical and imaging data were extracted. Three types of NOAB treatment options evaluated included behavioral therapy, medication therapy and minimally invasive therapies. The primary outcome - treatment success was defined as > 50% reduction in urinary frequency, urinary urgency or a subjective perception of treatment success. For the construction of the logistic regression ML models, bivariate analyses were performed with backward selection of variables with p-values of < 0.10 and clinically relevant variables applied. For ML, the cohort was split into a training dataset (70%) and a test dataset (30%). Area under the curve (AUC) scores are calculated to evaluate model performance. ResultsThe 110 patients included had a mean age of patients were 59 years old (SD 14 years), with a predominantly White cohort (91.8%), post-menopausal (68.2%). Patients were stratified by NOAB treatment therapy type received with 70 patients (63.6%) at behavioral therapy, 58 (52.7%) with medication therapy and 44 (40%) with minimally invasive therapies. On MRI brain imaging, 63.6% of patients had > 20 lesions though majority were not active lesions. The lesions were mostly located within the supratentorial (94.5%), infratentorial (68.2%) and 58.2 infratentorial brain (63.8%) as well as in the deep white matter (53.4%). For MRI spine imaging, most of the lesions were in the cervical spine (71.8%) followed by thoracic spine (43.7%) and lumbar spine (6.4%).10.3%). After feature selection, the top 10 highest ranking features were used to train complimentary LASSO-regularized logistic regression (LR) and extreme gradient-boosted tree (XGB) models. The top-performing LR models for predicting response to behavioral, medication, and minimally invasive therapies yielded AUC values of 0.74, 0.76, and 0.83, respectively. ConclusionsUsing these top-ranked features, LR models achieved AUC values of 0.74-0.83 for prediction of treatment success based on individual factors. Further prospective evaluation is needed to better characterize and validate these identified associations.

Step-by-Step Approach to Design Image Classifiers in AI: An Exemplary Application of the CNN Architecture for Breast Cancer Diagnosis

Lohani, A., Mishra, B. K., Wertheim, K. Y., Fagbola, T. M.

medrxiv logopreprintJun 17 2025
In recent years, different Convolutional Neural Networks (CNNs) approaches have been applied for image classification in general and specific problems such as breast cancer diagnosis, but there is no standardising approach to facilitate comparison and synergy. This paper attempts a step-by-step approach to standardise a common application of image classification with the specific problem of classifying breast ultrasound images for breast cancer diagnosis as an illustrative example. In this study, three distinct datasets: Breast Ultrasound Image (BUSI), Breast Ultrasound Image (BUI), and Ultrasound Breast Images for Breast Cancer (UBIBC) datasets have been used to build and fine-tune custom and pre-trained CNN models systematically. Custom CNN models have been built, and hence, transfer learning (TL) has been applied to deploy a broad range of pre-trained models, optimised by applying data augmentation techniques and hyperparameter tuning. Models were trained and tested in scenarios involving limited and large datasets to gain insights into their robustness and generality. The obtained results indicated that the custom CNN and VGG19 are the two most suitable architectures for this problem. The experimental results highlight the significance of employing an effective step-by-step approach in image classification tasks to enhance the robustness and generalisation capabilities of CNN-based classifiers.

Radiologist-AI workflow can be modified to reduce the risk of medical malpractice claims

Bernstein, M., Sheppard, B., Bruno, M. A., Lay, P. S., Baird, G. L.

medrxiv logopreprintJun 16 2025
BackgroundArtificial Intelligence (AI) is rapidly changing the legal landscape of radiology. Results from a previous experiment suggested that providing AI error rates can reduce perceived radiologist culpability, as judged by mock jury members (4). The current study advances this work by examining whether the radiologists behavior also impacts perceptions of liability. Methods. Participants (n=282) read about a hypothetical malpractice case where a 50-year-old who visited the Emergency Department with acute neurological symptoms received a brain CT scan to determine if bleeding was present. An AI system was used by the radiologist who interpreted imaging. The AI system correctly flagged the case as abnormal. Nonetheless, the radiologist concluded no evidence of bleeding, and the blood-thinner t-PA was administered. Participants were randomly assigned to either a 1.) single-read condition, where the radiologist interpreted the CT once after seeing AI feedback, or 2.) a double-read condition, where the radiologist interpreted the CT twice, first without AI and then with AI feedback. Participants were then told the patient suffered irreversible brain damage due to the missed brain bleed, resulting in the patient (plaintiff) suing the radiologist (defendant). Participants indicated whether the radiologist met their duty of care to the patient (yes/no). Results. Hypothetical jurors were more likely to side with the plaintiff in the single-read condition (106/142, 74.7%) than in the double-read condition (74/140, 52.9%), p=0.0002. Conclusion. This suggests that the penalty for disagreeing with correct AI can be mitigated when images are interpreted twice, or at least if a radiologist gives an interpretation before AI is used.

Predicting overall survival of NSCLC patients with clinical, radiomics and deep learning features

Kanakarajan, H., Zhou, J., Baene, W. D., Sitskoorn, M.

medrxiv logopreprintJun 16 2025
Background and purposeAccurate estimation of Overall Survival (OS) in Non-Small Cell Lung Cancer (NSCLC) patients provides critical insights for treatment planning. While previous studies showed that radiomics and Deep Learning (DL) features increased prediction accuracy, this study aimed to examine whether a model that combines the radiomics and DL features with the clinical and dosimetric features outperformed other models. Materials and methodsWe collected pre-treatment lung CT scans and clinical data for 225 NSCLC patients from the Maastro Clinic: 180 for training and 45 for testing. Radiomics features were extracted using the Python radiomics feature extractor, and DL features were obtained using a 3D ResNet model. An ensemble model comprising XGB and NN classifiers was developed using: (1) clinical features only; (2) clinical and radiomics features; (3) clinical and DL features; and (4) clinical, radiomics, and DL features. The performance metrics were evaluated for the test and K-fold cross-validation data sets. ResultsThe prediction model utilizing only clinical variables provided an Area Under the Receiver Operating Characteristic Curve (AUC) of 0.64 and a test accuracy of 77.55%. The best performance came from combining clinical, radiomics, and DL features (AUC: 0.84, accuracy: 85.71%). The prediction improvement of this model was statistically significant compared to models trained with clinical features alone or with a combination of clinical and radiomics features. ConclusionIntegrating radiomics and DL features with clinical characteristics improved the prediction of OS after radiotherapy for NSCLC patients. The increased accuracy of our integrated model enables personalized, risk-based treatment planning, guiding clinicians toward more effective interventions, improved patient outcomes and enhanced quality of life.

Deep-Learning Based Contrast Boosting Improves Lesion Visualization and Image Quality: A Multi-Center Multi-Reader Study on Clinical Performance with Standard Contrast Enhanced MRI of Brain Tumors

Pasumarthi, S., Campbell Arnold, T., Colombo, S., Rudie, J. D., Andre, J. B., Elor, R., Gulaka, P., Shankaranarayanan, A., Erb, G., Zaharchuk, G.

medrxiv logopreprintJun 13 2025
BackgroundGadolinium-based Contrast Agents (GBCAs) are used in brain MRI exams to improve the visualization of pathology and improve the delineation of lesions. Higher doses of GBCAs can improve lesion sensitivity but involve substantial deviation from standard-of-care procedures and may have safety implications, particularly in the light of recent findings on gadolinium retention and deposition. PurposeTo evaluate the clinical performance of an FDA cleared deep-learning (DL) based contrast boosting algorithm in routine clinical brain MRI exams. MethodsA multi-center retrospective database of contrast-enhanced brain MRI images (obtained from April 2017 to December 2023) was used to evaluate a DL-based contrast boosting algorithm. Pre-contrast and standard post-contrast (SC) images were processed with the algorithm to obtain contrast boosted (CB) images. Quantitative performance of CB images in comparison to SC images was compared using contrast-to-noise ratio (CNR), lesion-to-brain ratio (LBR) and contrast enhancement percentage (CEP). Three board-certified radiologists reviewed CB and SC images side-by-side for qualitative evaluation and rated them on a 4-point Likert scale for lesion contrast enhancement, border delineation, internal morphology, overall image quality, presence of artefacts, and changes in vessel conspicuity. The presence, cause, and severity of any false lesions was recorded. CB results were compared to SC using Wilcoxon signed rank test for statistical significance. ResultsBrain MRI images from 110 patients (47 {+/-} 22 years; 52 Females, 47 Males, 11 N/A) were evaluated. CB images had superior quantitative performance than SC images in terms of CNR (+634%), LBR (+70%) and CEP (+150%). In the qualitative assessment CB images showed better lesion visualization (3.73 vs 3.16) and had better image quality (3.55 vs 3.07). Readers were able to rule out all false lesions on CB by using SC for comparison. ConclusionsDeep learning based contrast boosting improves lesion visualization and image quality without increasing contrast dosage. Key ResultsO_LIIn a retrospective study of 110 patients, deep-learning based contrast boosted (CB) images showed better lesion visualization than standard post-contrast (SC) brain MRI images (3.73 vs 3.16; mean reader scores [4-point Likert scale]) C_LIO_LICB images had better overall image quality than SC images (3.55 vs 3.07) C_LIO_LIContrast-to-noise ratio, Lesion-to-brain Ratio and Contrast Enhancement Percentage for CB images were significantly higher than SC images (+729%, +88% and +165%; p < 0.001) C_LI Summary StatementDeep-learning based contrast boosting achieves better lesion visualization and overall image quality and provides more contrast information, without increasing the contrast dosage in contrast-enhanced brain MR protocols.

Protocol of the observational study STRATUM-OS: First step in the development and validation of the STRATUM tool based on multimodal data processing to assist surgery in patients affected by intra-axial brain tumours

Fabelo, H., Ramallo-Farina, Y., Morera, J., Pineiro, J. F., Lagares, A., Jimenez-Roldan, L., Burstrom, G., Garcia-Bello, M. A., Garcia-Perez, L., Falero, R., Gonzalez, M., Duque, S., Rodriguez-Jimenez, C., Hernandez, M., Delgado-Sanchez, J. J., Paredes, A. B., Hernandez, G., Ponce, P., Leon, R., Gonzalez-Martin, J. M., Rodriguez-Esparragon, F., Callico, G. M., Wagner, A. M., Clavo, B., STRATUM,

medrxiv logopreprintJun 13 2025
IntroductionIntegrated digital diagnostics can support complex surgeries in many anatomic sites, and brain tumour surgery represents one of the most complex cases. Neurosurgeons face several challenges during brain tumour surgeries, such as differentiating critical tissue from brain tumour margins. To overcome these challenges, the STRATUM project will develop a 3D decision support tool for brain surgery guidance and diagnostics based on multimodal data processing, including hyperspectral imaging, integrated as a point-of-care computing tool in neurosurgical workflows. This paper reports the protocol for the development and technical validation of the STRATUM tool. Methods and analysisThis international multicentre, prospective, open, observational cohort study, STRATUM-OS (study: 28 months, pre-recruitment: 2 months, recruitment: 20 months, follow-up: 6 months), with no control group, will collect data from 320 patients undergoing standard neurosurgical procedures to: (1) develop and technically validate the STRATUM tool, and (2) collect the outcome measures for comparing the standard procedure versus the standard procedure plus the use of the STRATUM tool during surgery in a subsequent historically controlled non-randomized clinical trial. Ethics and disseminationThe protocol was approved by the participant Ethics Committees. Results will be disseminated in scientific conferences and peer-reviewed journals. Trial registration number[Pending Number] ARTICLE SUMMARYO_ST_ABSStrengths and limitations of this studyC_ST_ABSO_LISTRATUM-OS will be the first multicentre prospective observational study to develop and technically validate a 3D decision support tool for brain surgery guidance and diagnostics in real-time based on artificial intelligence and multimodal data processing, including the emerging hyperspectral imaging modality. C_LIO_LIThis study encompasses a prospective collection of multimodal pre, intra and postoperative medical data, including innovative imaging modalities, from patients with intra-axial brain tumours. C_LIO_LIThis large observational study will act as historical control in a subsequent clinical trial to evaluate a fully-working prototype. C_LIO_LIAlthough the estimated sample size is deemed adequate for the purpose of the study, the complexity of the clinical context and the type of surgery could potentially lead to under-recruitment and under-representation of less prevalent tumour types. C_LI

Beyond Benchmarks: Towards Robust Artificial Intelligence Bone Segmentation in Socio-Technical Systems

Xie, K., Gruber, L. J., Crampen, M., Li, Y., Ferreira, A., Tappeiner, E., Gillot, M., Schepers, J., Xu, J., Pankert, T., Beyer, M., Shahamiri, N., ten Brink, R., Dot, G., Weschke, C., van Nistelrooij, N., Verhelst, P.-J., Guo, Y., Xu, Z., Bienzeisler, J., Rashad, A., Flügge, T., Cotton, R., Vinayahalingam, S., Ilesan, R., Raith, S., Madsen, D., Seibold, C., Xi, T., Berge, S., Nebelung, S., Kodym, O., Sundqvist, O., Thieringer, F., Lamecker, H., Coppens, A., Potrusil, T., Kraeima, J., Witjes, M., Wu, G., Chen, X., Lambrechts, A., Cevidanes, L. H. S., Zachow, S., Hermans, A., Truhn, D., Alves,

medrxiv logopreprintJun 13 2025
Despite the advances in automated medical image segmentation, AI models still underperform in various clinical settings, challenging real-world integration. In this multicenter evaluation, we analyzed 20 state-of-the-art mandibular segmentation models across 19,218 segmentations of 1,000 clinically resampled CT/CBCT scans. We show that segmentation accuracy varies by up to 25% depending on socio-technical factors such as voxel size, bone orientation, and patient conditions such as osteosynthesis or pathology. Higher sharpness, isotropic smaller voxels, and neutral orientation significantly improved results, while metallic osteosynthesis and anatomical complexity led to significant degradation. Our findings challenge the common view of AI models as "plug-and-play" tools and suggest evidence-based optimization recommendations for both clinicians and developers. This will in turn boost the integration of AI segmentation tools in routine healthcare.

CEREBLEED: Automated quantification and severity scoring of intracranial hemorrhage on non-contrast CT

Cepeda, S., Esteban-Sinovas, O., Arrese, I., Sarabia, R.

medrxiv logopreprintJun 13 2025
BackgroundIntracranial hemorrhage (ICH), whether spontaneous or traumatic, is a neurological emergency with high morbidity and mortality. Accurate assessment of severity is essential for neurosurgical decision-making. This study aimed to develop and evaluate a fully automated, deep learning-based tool for the standardized assessment of ICH severity, based on the segmentation of the hemorrhage and intracranial structures, and the computation of an objective severity index. MethodsNon-contrast cranial CT scans from patients with spontaneous or traumatic ICH were retrospectively collected from public datasets and a tertiary care center. Deep learning models were trained to segment hemorrhages and intracranial structures. These segmentations were used to compute a severity index reflecting bleeding burden and mass effect through volumetric relationships. Segmentation performance was evaluated on a hold-out test cohort. In a prospective cohort, the severity index was assessed in relation to expert-rated CT severity, clinical outcomes, and the need for urgent neurosurgical intervention. ResultsA total of 1,110 non-contrast cranial CT scans were analyzed, 900 from the retrospective cohort and 200 from the prospective evaluation cohort. The binary segmentation model achieved a median Dice score of 0.90 for total hemorrhage. The multilabel model yielded Dice scores ranging from 0.55 to 0.94 across hemorrhage subtypes. The severity index significantly correlated with expert-rated CT severity (p < 0.001), the modified Rankin Scale (p = 0.007), and the Glasgow Outcome Scale-Extended (p = 0.039), and independently predicted the need for urgent surgery (p < 0.001). A threshold [~]300 was identified as a decision point for surgical management (AUC = 0.83). ConclusionWe developed a fully automated and openly accessible pipeline for the analysis of non-contrast cranial CT in intracranial hemorrhage. It computes a novel index that objectively quantifies hemorrhage severity and is significantly associated with clinically relevant outcomes, including the need for urgent neurosurgical intervention.

Clinically reported covert cerebrovascular disease and risk of neurological disease: a whole-population cohort of 395,273 people using natural language processing

Iveson, M. H., Mukherjee, M., Davidson, E. M., Zhang, H., Sherlock, L., Ball, E. L., Mair, G., Hosking, A., Whalley, H., Poon, M. T. C., Wardlaw, J. M., Kent, D., Tobin, R., Grover, C., Alex, B., Whiteley, W. N.

medrxiv logopreprintJun 13 2025
ImportanceUnderstanding the relevance of covert cerebrovascular disease (CCD) for later health will allow clinicians to more effectively monitor and target interventions. ObjectiveTo examine the association between clinically reported CCD, measured using natural language processing (NLP), and subsequent disease risk. Design, Setting and ParticipantsWe conducted a retrospective e-cohort study using linked health record data. From all people with clinical brain imaging in Scotland from 2010 to 2018, we selected people with no prior hospitalisation for neurological disease. The data were analysed from March 2024 to June 2025. ExposureFour phenotypes were identified with NLP of imaging reports: white matter hypoattenuation or hyperintensities (WMH), lacunes, cortical infarcts and cerebral atrophy. Main outcomes and measuresHazard ratios (aHR) for stroke, dementia, and Parkinsons disease (conditions previously associated with CCD), epilepsy (a brain-based control condition) and colorectal cancer (a non-brain control condition), adjusted for age, sex, deprivation, region, scan modality, and pre-scan healthcare, were calculated for each phenotype. ResultsFrom 395,273 people with brain imaging and no history of neurological disease, 145,978 (37%) had [&ge;]1 phenotype. For each phenotype, the aHR of any stroke was: WMH 1.4 (95%CI: 1.3-1.4), lacunes 1.6 (1.5-1.6), cortical infarct 1.7 (1.6-1.8), and cerebral atrophy 1.1 (1.0-1.1). The aHR of any dementia was: WMH, 1.3 (1.3-1.3), lacunes, 1.0 (0.9-1.0), cortical infarct 1.1 (1.0-1.1) and cerebral atrophy 1.7 (1.7-1.7). The aHR of Parkinsons disease was, in people with a report of: WMH 1.1 (1.0-1.2), lacunes 1.1 (0.9-1.2), cortical infarct 0.7 (0.6-0.9) and cerebral atrophy 1.4 (1.3-1.5). The aHRs between CCD phenotypes and epilepsy and colorectal cancer overlapped the null. Conclusions and RelevanceNLP identified CCD and atrophy phenotypes from routine clinical image reports, and these had important associations with future stroke, dementia and Parkinsons disease. Prevention of neurological disease in people with CCD should be a priority for healthcare providers and policymakers. Key PointsO_ST_ABSQuestionC_ST_ABSAre measures of Covert Cerebrovascular Disease (CCD) associated with the risk of subsequent disease (stroke, dementia, Parkinsons disease, epilepsy, and colorectal cancer)? FindingsThis study used a validated NLP algorithm to identify CCD (white matter hypoattenuation/hyperintensities, lacunes, cortical infarcts) and cerebral atrophy from both MRI and computed tomography (CT) imaging reports generated during routine healthcare in >395K people in Scotland. In adjusted models, we demonstrate higher risk of dementia (particularly Alzheimers disease) in people with atrophy, and higher risk of stroke in people with cortical infarcts. However, associations with an age-associated control outcome (colorectal cancer) were neutral, supporting a causal relationship. It also highlights differential associations between cerebral atrophy and dementia and cortical infarcts and stroke risk. MeaningCCD or atrophy on brain imaging reports in routine clinical practice is associated with a higher risk of stroke or dementia. Evidence is needed to support treatment strategies to reduce this risk. NLP can identify these important, otherwise uncoded, disease phenotypes, allowing research at scale into imaging-based biomarkers of dementia and stroke.

AI-based identification of patients who benefit from revascularization: a multicenter study

Zhang, W., Miller, R. J., Patel, K., Shanbhag, A., Liang, J., Lemley, M., Ramirez, G., Builoff, V., Yi, J., Zhou, J., Kavanagh, P., Acampa, W., Bateman, T. M., Di Carli, M. F., Dorbala, S., Einstein, A. J., Fish, M. B., Hauser, M. T., Ruddy, T., Kaufmann, P. A., Miller, E. J., Sharir, T., Martins, M., Halcox, J., Chareonthaitawee, P., Dey, D., Berman, D., Slomka, P.

medrxiv logopreprintJun 12 2025
Background and AimsRevascularization in stable coronary artery disease often relies on ischemia severity, but we introduce an AI-driven approach that uses clinical and imaging data to estimate individualized treatment effects and guide personalized decisions. MethodsUsing a large, international registry from 13 centers, we developed an AI model to estimate individual treatment effects by simulating outcomes under alternative therapeutic strategies. The model was trained on an internal cohort constructed using 1:1 propensity score matching to emulate randomized controlled trials (RCTs), creating balanced patient pairs in which only the treatment strategy--early revascularization (defined as any procedure within 90 days of MPI) versus medical therapy--differed. This design allowed the model to estimate individualized treatment effects, forming the basis for counterfactual reasoning at the patient level. We then derived the AI-REVASC score, which quantifies the potential benefit, for each patient, of early revascularization. The score was validated in the held-out testing cohort using Cox regression. ResultsOf 45,252 patients, 19,935 (44.1%) were female, median age 65 (IQR: 57-73). During a median follow-up of 3.6 years (IQR: 2.7-4.9), 4,323 (9.6%) experienced MI or death. The AI model identified a group (n=1,335, 5.9%) that benefits from early revascularization with a propensity-adjusted hazard ratio of 0.50 (95% CI: 0.25-1.00). Patients identified for early revascularization had higher prevalence of hypertension, diabetes, dyslipidemia, and lower LVEF. ConclusionsThis study pioneers a scalable, data-driven approach that emulates randomized trials using retrospective data. The AI-REVASC score enables precision revascularization decisions where guidelines and RCTs fall short. Graphical Abstract O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=104 SRC="FIGDIR/small/25329295v1_ufig1.gif" ALT="Figure 1"> View larger version (31K): [email protected]@1df75d8org.highwire.dtl.DTLVardef@1b1ce68org.highwire.dtl.DTLVardef@663cdf_HPS_FORMAT_FIGEXP M_FIG C_FIG
Page 2 of 768 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.