Radiomics-based machine learning in prediction of response to neoadjuvant chemotherapy in osteosarcoma: A systematic review and meta-analysis.
Authors
Affiliations (5)
Affiliations (5)
- Research Center of Thoracic Oncology (RCTO), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
- Department of Radiology, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA, USA.
- Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA.
- Research Center of Thoracic Oncology (RCTO), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran. Electronic address: [email protected].
Abstract
Osteosarcoma (OS) is the most common primary bone malignancy, and neoadjuvant chemotherapy (NAC) improves survival rates. However, OS heterogeneity results in variable treatment responses, highlighting the need for reliable, non-invasive tools to predict NAC response. Radiomics-based machine learning (ML) offers potential for identifying imaging biomarkers to predict treatment outcomes. This systematic review and meta-analysis evaluated the accuracy and reliability of radiomics models for predicting NAC response in OS. A systematic search was conducted in PubMed, Embase, Scopus, and Web of Science up to November 2024. Studies using radiomics-based ML for NAC response prediction in OS were included. Pooled sensitivity, specificity, and AUC for training and validation cohorts were calculated using bivariate random-effects modeling, with clinical-combined models analyzed separately. Quality assessment was performed using the QUADAS-2 tool, radiomics quality score (RQS), and METRICS scores. Sixteen studies were included, with 63 % using MRI and 37 % using CT. Twelve studies, comprising 1639 participants, were included in the meta-analysis. Pooled metrics for training cohorts showed an AUC of 0.93, sensitivity of 0.89, and specificity of 0.85. Validation cohorts achieved an AUC of 0.87, sensitivity of 0.81, and specificity of 0.82. Clinical-combined models outperformed radiomics-only models. The mean RQS score was 9.44 ± 3.41, and the mean METRICS score was 60.8 % ± 17.4 %. Radiomics-based ML shows promise for predicting NAC response in OS, especially when combined with clinical indicators. However, limitations in external validation and methodological consistency must be addressed.