Sort by:
Page 99 of 1191186 results

Deep Learning Auto-segmentation of Diffuse Midline Glioma on Multimodal Magnetic Resonance Images.

Fernández-Patón M, Montoya-Filardi A, Galiana-Bordera A, Martínez-Gironés PM, Veiga-Canuto D, Martínez de Las Heras B, Cerdá-Alberich L, Martí-Bonmatí L

pubmed logopapersMay 27 2025
Diffuse midline glioma (DMG) H3 K27M-altered is a rare pediatric brainstem cancer with poor prognosis. To advance the development of predictive models to gain a deeper understanding of DMG, there is a crucial need for seamlessly integrating automatic and highly accurate tumor segmentation techniques. There is only one method that tries to solve this task in this cancer; for that reason, this study develops a modified CNN-based 3D-Unet tool to automatically segment DMG in an accurate way in magnetic resonance (MR) images. The dataset consisted of 52 DMG patients and 70 images, each with T1W and T2W or FLAIR images. Three different datasets were created: T1W images, T2W or FLAIR images, and a combined set of T1W and T2W/FLAIR images. Denoising, bias field correction, spatial resampling, and normalization were applied as preprocessing steps to the MR images. Patching techniques were also used to enlarge the dataset size. For tumor segmentation, a 3D U-Net architecture with residual blocks was used. The best results were obtained for the dataset composed of all T1W and T2W/FLAIR images, reaching an average Dice Similarity Coefficient (DSC) of 0.883 on the test dataset. These results are comparable to other brain tumor segmentation models and to state-of-the-art results in DMG segmentation using fewer sequences. Our results demonstrate the effectiveness of the proposed 3D U-Net architecture for DMG tumor segmentation. This advancement holds potential for enhancing the precision of diagnostic and predictive models in the context of this challenging pediatric cancer.

Automated Body Composition Analysis Using DAFS Express on 2D MRI Slices at L3 Vertebral Level.

Akella V, Bagherinasab R, Lee H, Li JM, Nguyen L, Salehin M, Chow VTY, Popuri K, Beg MF

pubmed logopapersMay 27 2025
Body composition analysis is vital in assessing health conditions such as obesity, sarcopenia, and metabolic syndromes. MRI provides detailed images of skeletal muscle (SM), visceral adipose tissue (VAT), and subcutaneous adipose tissue (SAT), but their manual segmentation is labor-intensive and limits clinical applicability. This study validates an automated tool for MRI-based 2D body composition analysis (Data Analysis Facilitation Suite (DAFS) Express), comparing its automated measurements with expert manual segmentations using UK Biobank data. A cohort of 399 participants from the UK Biobank dataset was selected, yielding 423 single L3 slices for analysis. DAFS Express performed automated segmentations of SM, VAT, and SAT, which were then manually corrected by expert raters for validation. Evaluation metrics included Jaccard coefficients, Dice scores, intraclass correlation coefficients (ICCs), and Bland-Altman Plots to assess segmentation agreement and reliability. High agreements were observed between automated and manual segmentations with mean Jaccard scores: SM 99.03%, VAT 95.25%, and SAT 99.57%, and mean Dice scores: SM 99.51%, VAT 97.41%, and SAT 99.78%. Cross-sectional area comparisons showed consistent measurements, with automated methods closely matching manual measurements for SM and SAT, and slightly higher values for VAT (SM: auto 132.51 cm<sup>2</sup>, manual 132.36 cm<sup>2</sup>; VAT: auto 137.07 cm<sup>2</sup>, manual 134.46 cm<sup>2</sup>; SAT: auto 203.39 cm<sup>2</sup>, manual 202.85 cm<sup>2</sup>). ICCs confirmed strong reliability (SM 0.998, VAT 0.994, SAT 0.994). Bland-Altman plots revealed minimal biases, and boxplots illustrated distribution similarities across SM, VAT, and SAT areas. On average, DAFS Express took 18 s per DICOM for a total of 126.9 min for 423 images to output segmentations and measurement PDF's per DICOM. Automated segmentation of SM, VAT, and SAT from 2D MRI images using DAFS Express showed comparable accuracy to manual segmentation. This underscores its potential to streamline image analysis processes in research and clinical settings, enhancing diagnostic accuracy and efficiency. Future work should focus on further validation across diverse clinical applications and imaging conditions.

Deep learning network enhances imaging quality of low-b-value diffusion-weighted imaging and improves lesion detection in prostate cancer.

Liu Z, Gu WJ, Wan FN, Chen ZZ, Kong YY, Liu XH, Ye DW, Dai B

pubmed logopapersMay 27 2025
Diffusion-weighted imaging with higher b-value improves detection rate for prostate cancer lesions. However, obtaining high b-value DWI requires more advanced hardware and software configuration. Here we use a novel deep learning network, NAFNet, to generate a deep learning reconstructed (DLR<sub>1500</sub>) images from 800 b-value to mimic 1500 b-value images, and to evaluate its performance and lesion detection improvements based on whole-slide images (WSI). We enrolled 303 prostate cancer patients with both 800 and 1500 b-values from Fudan University Shanghai Cancer Centre between 2017 and 2020. We assigned these patients to the training and validation set in a 2:1 ratio. The testing set included 36 prostate cancer patients from an independent institute who had only preoperative DWI at 800 b-value. Two senior radiology doctors and two junior radiology doctors read and delineated cancer lesions on DLR<sub>1500</sub>, original 800 and 1500 b-values DWI images. WSI were used as the ground truth to assess the lesion detection improvement of DLR<sub>1500</sub> images in the testing set. After training and generating, within junior radiology doctors, the diagnostic AUC based on DLR<sub>1500</sub> images is not inferior to that based on 1500 b-value images (0.832 (0.788-0.876) vs. 0.821 (0.747-0.899), P = 0.824). The same phenomenon is also observed in senior radiology doctors. Furthermore, in the testing set, DLR<sub>1500</sub> images could significantly enhance junior radiology doctors' diagnostic performance than 800 b-value images (0.848 (0.758-0.938) vs. 0.752 (0.661-0.843), P = 0.043). DLR<sub>1500</sub> DWIs were comparable in quality to original 1500 b-value images within both junior and senior radiology doctors. NAFNet based DWI enhancement can significantly improve the image quality of 800 b-value DWI, and therefore promote the accuracy of prostate cancer lesion detection for junior radiology doctors.

Modeling Brain Aging with Explainable Triamese ViT: Towards Deeper Insights into Autism Disorder.

Zhang Z, Aggarwal V, Angelov P, Jiang R

pubmed logopapersMay 27 2025
Machine learning, particularly through advanced imaging techniques such as three-dimensional Magnetic Resonance Imaging (MRI), has significantly improved medical diagnostics. This is especially critical for diagnosing complex conditions like Alzheimer's disease. Our study introduces Triamese-ViT, an innovative Tri-structure of Vision Transformers (ViTs) that incorporates a built-in interpretability function, it has structure-aware explainability that allows for the identification and visualization of key features or regions contributing to the prediction, integrates information from three perspectives to enhance brain age estimation. This method not only increases accuracy but also improves interoperability with existing techniques. When evaluated, Triamese-ViT demonstrated superior performance and produced insightful attention maps. We applied these attention maps to the analysis of natural aging and the diagnosis of Autism Spectrum Disorder (ASD). The results aligned with those from occlusion analysis, identifying the Cingulum, Rolandic Operculum, Thalamus, and Vermis as important regions in normal aging, and highlighting the Thalamus and Caudate Nucleus as key regions for ASD diagnosis.

Predicting treatment response in individuals with major depressive disorder using structural MRI-based similarity features.

Song S, Wang S, Gao J, Zhu L, Zhang W, Wang Y, Wang D, Zhang D, Wang K

pubmed logopapersMay 26 2025
Major Depressive Disorder (MDD) is a prevalent mental health condition with significant societal impact. Structural magnetic resonance imaging (sMRI) and machine learning have shown promise in psychiatry, offering insights into brain abnormalities in MDD. However, predicting treatment response remains challenging. This study leverages inter-brain similarity from sMRI as a novel feature to enhance prediction accuracy and explore disease mechanisms. The method's generalizability across adult and adolescent cohorts is also evaluated. The study included 172 participants. Based on remission status, 39 participants from the Hangzhou Dataset and 34 from the Jinan Dataset were selected for further analysis. Three methods were used to extract brain similarity features, followed by a statistical test for feature selection. Six machine learning classifiers were employed to predict treatment response, and their generalizability was tested using the Jinan Dataset. Group analyses between remission and non-remission groups were conducted to identify brain regions associated with treatment response. Brain similarity features outperformed traditional metrics in predicting treatment outcomes, with the highest accuracy achieved by the model using these features. Between-group analyses revealed that the remission group had lower gray matter volume and density in the right precentral gyrus, but higher white matter volume (WMV). In the Jinan Dataset, significant differences were observed in the right cerebellum and fusiform gyrus, with higher WMV and density in the remission group. This study demonstrates that brain similarity features combined with machine learning can predict treatment response in MDD with moderate success across age groups. These findings emphasize the importance of considering age-related differences in treatment planning to personalize care. Clinical trial number: not applicable.

A novel MRI-based deep learning imaging biomarker for comprehensive assessment of the lenticulostriate artery-neural complex.

Song Y, Jin Y, Wei J, Wang J, Zheng Z, Wang Y, Zeng R, Lu W, Huang B

pubmed logopapersMay 26 2025
To develop a deep learning network for extracting features from the blood-supplying regions of the lenticulostriate artery (LSA) and to establish these features as an imaging biomarker for the comprehensive assessment of the lenticulostriate artery-neural complex (LNC). Automatic segmentation of brain regions on T1-weighted images was performed, followed by the development of the ResNet18 framework to extract and visualize deep learning features from three regions of interest (ROIs). The root mean squared error (RMSE) was then used to assess the correlation between these features and fractional anisotropy (FA) values from diffusion tensor imaging (DTI) and cerebral blood flow (CBF) values from arterial spin labeling (ASL). The correlation of these features with LSA root numbers and three disease categories was further validated using fine-tuning classification (Task1 and Task2). Seventy-nine patients were enrolled and classified into three groups. No significant differences were found in the number of LSA roots between the right and left hemispheres, nor in the FA and CBF values of the ROIs. The RMSE loss, relative to the mean FA and CBF values across different ROI inputs, ranged from 0.154 to 0.213%. The model's accuracy in Task1 and Task2 fine-tuning classification reached 100%. Deep learning features extracted from the basal ganglia nuclei effectively reflect cerebrovascular and neurological functions and reveal the damage status of the LSA. This approach holds promise as a novel imaging biomarker for the comprehensive assessment of the LNC.

Segmentation of the Left Ventricle and Its Pathologies for Acute Myocardial Infarction After Reperfusion in LGE-CMR Images.

Li S, Wu C, Feng C, Bian Z, Dai Y, Wu LM

pubmed logopapersMay 26 2025
Due to the association with higher incidence of left ventricular dysfunction and complications, segmentation of left ventricle and related pathological tissues: microvascular obstruction and myocardial infarction from late gadolinium enhancement cardiac magnetic resonance images is crucially important. However, lack of datasets, diverse shapes and locations, extreme imbalanced class, severe intensity distribution overlapping are the main challenges. We first release a late gadolinium enhancement cardiac magnetic resonance benchmark dataset LGE-LVP containing 140 patients with left ventricle myocardial infarction and concomitant microvascular obstruction. Then, a progressive deep learning model LVPSegNet is proposed to segment the left ventricle and its pathologies via adaptive region of interest extraction, sample augmentation, curriculum learning, and multiple receptive field fusion in dealing with the challenges. Comprehensive comparisons with state-of-the-art models on the internal and external datasets demonstrate that the proposed model performs the best on both geometric and clinical metrics and it most closely matched the clinician's performance. Overall, the released LGE-LVP dataset alongside the LVPSegNet we proposed offer a practical solution for automated left ventricular and its pathologies segmentation by providing data support and facilitating effective segmentation. The dataset and source codes will be released via https://github.com/DFLAG-NEU/LVPSegNet.

Diffusion based multi-domain neuroimaging harmonization method with preservation of anatomical details.

Lan H, Varghese BA, Sheikh-Bahaei N, Sepehrband F, Toga AW, Choupan J

pubmed logopapersMay 26 2025
In multi-center neuroimaging studies, the technical variability caused by the batch differences could hinder the ability to aggregate data across sites, and negatively impact the reliability of study-level results. Recent efforts in neuroimaging harmonization have aimed to minimize these technical gaps and reduce technical variability across batches. While Generative Adversarial Networks (GAN) has been a prominent method for addressing harmonization tasks, GAN-harmonized images suffer from artifacts or anatomical distortions. Given the advancements of denoising diffusion probabilistic model which produces high-fidelity images, we have assessed the efficacy of the diffusion model for neuroimaging harmonization. While GAN-based methods intrinsically transform imaging styles between two domains per model, we have demonstrated the diffusion model's superior capability in harmonizing images across multiple domains with single model. Our experiments highlight that the learned domain invariant anatomical condition reinforces the model to accurately preserve the anatomical details while differentiating batch differences at each diffusion step. Our proposed method has been tested using T1-weighted MRI images from two public neuroimaging datasets of ADNI1 and ABIDE II, yielding harmonization results with consistent anatomy preservation and superior FID score compared to the GAN-based methods. We have conducted multiple analyses including extensive quantitative and qualitative evaluations against the baseline models, ablation study showcasing the benefits of the learned domain invariant conditions, and improvements in the consistency of perivascular spaces segmentation analysis and volumetric analysis through harmonization.

Improving brain tumor diagnosis: A self-calibrated 1D residual network with random forest integration.

Sumithra A, Prathap PMJ, Karthikeyan A, Dhanasekaran S

pubmed logopapersMay 26 2025
Medical specialists need to perform precise MRI analysis for accurate diagnosis of brain tumors. Current research has developed multiple artificial intelligence (AI) techniques for the process automation of brain tumor identification. However, existing approaches often depend on singular datasets, limiting their generalization capabilities across diverse clinical scenarios. The research introduces SCR-1DResNet as a new diagnostic tool for brain tumor detection that incorporates self-calibrated Random Forest along with one-dimensional residual networks. The research starts with MRI image acquisition from multiple Kaggle datasets then proceeds through stepwise processing that eliminates noise, enhances images, and performs resizing and normalization and conducts skull stripping operations. After data collection the WaveSegNet mode l extracts important attributes from tumors at multiple scales. Components of Random Forest classifier together with One-Dimensional Residual Network form the SCR-1DResNet model via self-calibration optimization to improve prediction reliability. Tests show the proposed system produces classification precision of 98.50% accompanied by accuracy of 98.80% and recall reaching 97.80% respectively. The SCR-1DResNet model demonstrates superior diagnostic capability and enhanced performance speed which shows strong prospects towards clinical decision support systems and improved neurological and oncological patient treatments.

An Explainable Diagnostic Framework for Neurodegenerative Dementias via Reinforcement-Optimized LLM Reasoning

Andrew Zamai, Nathanael Fijalkow, Boris Mansencal, Laurent Simon, Eloi Navet, Pierrick Coupe

arxiv logopreprintMay 26 2025
The differential diagnosis of neurodegenerative dementias is a challenging clinical task, mainly because of the overlap in symptom presentation and the similarity of patterns observed in structural neuroimaging. To improve diagnostic efficiency and accuracy, deep learning-based methods such as Convolutional Neural Networks and Vision Transformers have been proposed for the automatic classification of brain MRIs. However, despite their strong predictive performance, these models find limited clinical utility due to their opaque decision making. In this work, we propose a framework that integrates two core components to enhance diagnostic transparency. First, we introduce a modular pipeline for converting 3D T1-weighted brain MRIs into textual radiology reports. Second, we explore the potential of modern Large Language Models (LLMs) to assist clinicians in the differential diagnosis between Frontotemporal dementia subtypes, Alzheimer's disease, and normal aging based on the generated reports. To bridge the gap between predictive accuracy and explainability, we employ reinforcement learning to incentivize diagnostic reasoning in LLMs. Without requiring supervised reasoning traces or distillation from larger models, our approach enables the emergence of structured diagnostic rationales grounded in neuroimaging findings. Unlike post-hoc explainability methods that retrospectively justify model decisions, our framework generates diagnostic rationales as part of the inference process-producing causally grounded explanations that inform and guide the model's decision-making process. In doing so, our framework matches the diagnostic performance of existing deep learning methods while offering rationales that support its diagnostic conclusions.
Page 99 of 1191186 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.