Sort by:
Page 88 of 3513502 results

Comprehensive analysis of [<sup>18</sup>F]MFBG biodistribution normal patterns and variability in pediatric patients with neuroblastoma.

Wang P, Chen X, Yan X, Yan J, Yang S, Mao J, Li F, Su X

pubmed logopapersAug 15 2025
[<sup>18</sup>F]-meta-fluorobenzylguanidine ([<sup>18</sup>F]MFBG) PET/CT is a promising imaging modality for neural crest-derived tumors, particularly neuroblastoma. Accurate interpretation necessitates an understanding of normal biodistribution and variations in physiological uptake. This study aimed to systematically characterize the physiological distribution and variability of [<sup>18</sup>F]MFBG uptake in pediatric patients to enhance clinical interpretation and differentiate normal from pathological uptake. We retrospectively analyzed [<sup>18</sup>F]MFBG PET/CT scans from 169 pediatric neuroblastoma patients, including 20 in confirmed remission, for detailed biodistribution analysis. Organ uptake was quantified using both manual segmentation and deep learning(DL)-based automatic segmentation methods. Patterns of physiological uptake variants were categorized and illustrated using representative cases. [<sup>18</sup>F]MFBG demonstrated consistent physiological uptake in the salivary glands (SUVmax 9.8 ± 3.3), myocardium (7.1 ± 1.7), and adrenal glands (4.6 ± 0.9), with low activity in bone (0.6 ± 0.2) and muscle (0.8 ± 0.2). DL-based analysis confirmed uniform, mild uptake across vertebral and peripheral skeletal structures (SUVmean 0.47 ± 0.08). Three physiological liver uptake patterns were identified: uniform (43%), left-lobe predominant (31%), and marginal (26%). Asymmetric uptake in the pancreatic head, transient brown adipose tissue activity, gallbladder excretion, and symmetric epiphyseal uptake were also recorded. These variants were not associated with structural abnormalities or clinical recurrence and showed distinct patterns from pathological lesions. This study establishes a reference for normal [<sup>18</sup>F]MFBG biodistribution and physiological variants in children. Understanding these patterns is essential for accurate image interpretation and the avoidance of diagnostic pitfalls in pediatric neuroblastoma patients.

End-to-end deep learning for the diagnosis of pelvic and sacral tumors using non-enhanced MRI: a multi-center study.

Yin P, Liu K, Chen R, Liu Y, Lu L, Sun C, Liu Y, Zhang T, Zhong J, Chen W, Yu R, Wang D, Liu X, Hong N

pubmed logopapersAug 15 2025
This study developed an end-to-end deep learning (DL) model using non-enhanced MRI to diagnose benign and malignant pelvic and sacral tumors (PSTs). Retrospective data from 835 patients across four hospitals were employed to train, validate, and test the models. Six diagnostic models with varied input sources were compared. Performance (AUC, accuracy/ACC) and reading times of three radiologists were compared. The proposed Model SEG-CL-NC achieved AUC/ACC of 0.823/0.776 (Internal Test Set 1) and 0.836/0.781 (Internal Test Set 2). In External Dataset Centers 2, 3, and 4, its ACC was 0.714, 0.740, and 0.756, comparable to contrast-enhanced models and radiologists (P > 0.05), while its diagnosis time was significantly shorter than radiologists (P < 0.01). Our results suggested that the proposed Model SEG-CL-NC could achieve comparable performance to contrast-enhanced models and radiologists in diagnosing benign and malignant PSTs, offering an accurate, efficient, and cost-effective tool for clinical practice.

Spatio-temporal deep learning with temporal attention for indeterminate lung nodule classification.

Farina B, Carbajo Benito R, Montalvo-García D, Bermejo-Peláez D, Maceiras LS, Ledesma-Carbayo MJ

pubmed logopapersAug 15 2025
Lung cancer is the leading cause of cancer-related death worldwide. Deep learning-based computer-aided diagnosis (CAD) systems in screening programs enhance malignancy prediction, assist radiologists in decision-making, and reduce inter-reader variability. However, limited research has explored the analysis of repeated annual exams of indeterminate lung nodules to improve accuracy. We introduced a novel spatio-temporal deep learning framework, the global attention convolutional recurrent neural network (globAttCRNN), to predict indeterminate lung nodule malignancy using serial screening computed tomography (CT) images from the National Lung Screening Trial (NLST) dataset. The model comprises a lightweight 2D convolutional neural network for spatial feature extraction and a recurrent neural network with a global attention module to capture the temporal evolution of lung nodules. Additionally, we proposed new strategies to handle missing data in the temporal dimension to mitigate potential biases arising from missing time steps, including temporal augmentation and temporal dropout. Our model achieved an area under the receiver operating characteristic curve (AUC-ROC) of 0.954 in an independent test set of 175 lung nodules, each detected in multiple CT scans over patient follow-up, outperforming baseline single-time and multiple-time architectures. The temporal global attention module prioritizes informative time points, enabling the model to capture key spatial and temporal features while ignoring irrelevant or redundant information. Our evaluation emphasizes its potential as a valuable tool for the diagnosis and stratification of patients at risk of lung cancer.

High sensitivity in spontaneous intracranial hemorrhage detection from emergency head CT scans using ensemble-learning approach.

Takala J, Peura H, Pirinen R, Väätäinen K, Terjajev S, Lin Z, Raj R, Korja M

pubmed logopapersAug 15 2025
Spontaneous intracranial hemorrhages have a high disease burden. Due to increasing medical imaging, new technological solutions for assisting in image interpretation are warranted. We developed a deep learning (DL) solution for spontaneous intracranial hemorrhage detection from head CT scans. The DL solution included four base convolutional neural networks (CNNs), which were trained using 300 head CT scans. A metamodel was trained on top of the four base CNNs, and simple post processing steps were applied to improve the solution's accuracy. The solution performance was evaluated using a retrospective dataset of consecutive emergency head CTs imaged in ten different emergency rooms. 7797 head CT scans were included in the validation dataset and 118 CT scans presented with spontaneous intracranial hemorrhage. The trained metamodel together with a simple rule-based post-processing step showed 89.8% sensitivity and 89.5% specificity for hemorrhage detection at the case-level. The solution detected all 78 spontaneous hemorrhage cases imaged presumably or confirmedly within 12 h from the symptom onset and identified five hemorrhages missed in the initial on-call reports. Although the success of DL algorithms depends on multiple factors, including training data versatility and quality of annotations, using the proposed ensemble-learning approach and rule-based post-processing may help clinicians to develop highly accurate DL solutions for clinical imaging diagnostics.

A comparative analysis of imaging-based algorithms for detecting focal cortical dysplasia type II in children.

Šanda J, Holubová Z, Kala D, Jiránková K, Kudr M, Masák T, Bělohlávková A, Kršek P, Otáhal J, Kynčl M

pubmed logopapersAug 15 2025
Focal cortical dysplasia (FCD) is the leading cause of drug-resistant epilepsy (DRE) in pediatric patients. Accurate detection of FCDs is crucial for successful surgical outcomes, yet remains challenging due to frequently subtle MRI findings, especially in children, whose brain morphology undergoes significant developmental changes. Automated detection algorithms have the potential to improve diagnostic precision, particularly in cases, where standard visual assessment fails. This study aimed to evaluate the performance of automated algorithms in detecting FCD type II in pediatric patients and to examine the impact of adult versus pediatric templates on detection accuracy. MRI data from 23 surgical pediatric patients with histologically confirmed FCD type II were retrospectively analyzed. Three imaging-based detection algorithms were applied to T1-weighted images, each targeting key structural features: cortical thickness, gray matter intensity (extension), and gray-white matter junction blurring. Their performance was assessed using adult and pediatric healthy controls templates, with validation against both predictive radiological ROIs (PRR) and post-resection cavities (PRC). The junction algorithm achieved the highest median dice score (0.028, IQR 0.038, p < 0.01 when compared with other algorithms) and detected relevant clusters even in MRI-negative cases. The adult template (median dice score 0.013, IQR 0.027) significantly outperformed the pediatric template (0.0032, IQR 0.023) (p < 0.001), highlighting the importance of template consistency. Despite superior performance of the adult template, its use in pediatric populations may introduce bias, as it does not account for age-specific morphological features such as cortical maturation and incomplete myelination. Automated algorithms, especially those targeting junction blurring, enhance FCD detection in pediatric populations. These algorithms may serve as valuable decision-support tools, particularly in settings where neuroradiological expertise is limited.

SMAS: Structural MRI-based AD Score using Bayesian supervised VAE.

Nemali A, Bernal J, Yakupov R, D S, Dyrba M, Incesoy EI, Mukherjee S, Peters O, Ersözlü E, Hellmann-Regen J, Preis L, Priller J, Spruth E, Altenstein S, Lohse A, Schneider A, Fliessbach K, Kimmich O, Wiltfang J, Hansen N, Schott B, Rostamzadeh A, Glanz W, Butryn M, Buerger K, Janowitz D, Ewers M, Perneczky R, Rauchmann B, Teipel S, Kilimann I, Goerss D, Laske C, Sodenkamp S, Spottke A, Coenjaerts M, Brosseron F, Lüsebrink F, Dechent P, Scheffler K, Hetzer S, Kleineidam L, Stark M, Jessen F, Duzel E, Ziegler G

pubmed logopapersAug 15 2025
This study introduces the Structural MRI-based Alzheimer's Disease Score (SMAS), a novel index intended to quantify Alzheimer's Disease (AD)-related morphometric patterns using a deep learning Bayesian-supervised Variational Autoencoder (Bayesian-SVAE). The SMAS index was constructed using baseline structural MRI data from the DELCODE study and evaluated longitudinally in two independent cohorts: DELCODE (n=415) and ADNI (n=190). Our findings indicate that SMAS has strong associations with cognitive performance (DELCODE: r=-0.83; ADNI: r=-0.62), age (DELCODE: r=0.50; ADNI: r=0.28), hippocampal volume (DELCODE: r=-0.44; ADNI: r=-0.66), and total gray matter volume (DELCODE: r=-0.42; ADNI: r=-0.47), suggesting its potential as a biomarker for AD-related brain atrophy. Moreover, our longitudinal studies indicated that SMAS may be useful for the early identification and tracking of AD. The model demonstrated significant predictive accuracy in distinguishing cognitively healthy individuals from those with AD (DELCODE: AUC=0.971 at baseline, 0.833 at 36 months; ADNI: AUC=0.817 at baseline, improving to 0.903 at 24 months). Notably, over 36 months, the SMAS index outperformed existing measures such as SPARE-AD and hippocampal volume. The relevance map analysis revealed significant morphological changes in key AD-related brain regions, including the hippocampus, posterior cingulate cortex, precuneus, and lateral parietal cortex, highlighting that SMAS is a sensitive and interpretable biomarker of brain atrophy, suitable for early AD detection and longitudinal monitoring of disease progression.

Automating the Referral of Bone Metastases Patients With and Without the Use of Large Language Models.

Sangwon KL, Han X, Becker A, Zhang Y, Ni R, Zhang J, Alber DA, Alyakin A, Nakatsuka M, Fabbri N, Aphinyanaphongs Y, Yang JT, Chachoua A, Kondziolka D, Laufer I, Oermann EK

pubmed logopapersAug 15 2025
Bone metastases, affecting more than 4.8% of patients with cancer annually, and particularly spinal metastases require urgent intervention to prevent neurological complications. However, the current process of manually reviewing radiological reports leads to potential delays in specialist referrals. We hypothesized that natural language processing (NLP) review of routine radiology reports could automate the referral process for timely multidisciplinary care of spinal metastases. We assessed 3 NLP models-a rule-based regular expression (RegEx) model, GPT-4, and a specialized Bidirectional Encoder Representations from Transformers (BERT) model (NYUTron)-for automated detection and referral of bone metastases. Study inclusion criteria targeted patients with active cancer diagnoses who underwent advanced imaging (computed tomography, MRI, or positron emission tomography) without previous specialist referral. We defined 2 separate tasks: task of identifying clinically significant bone metastatic terms (lexical detection), and identifying cases needing a specialist follow-up (clinical referral). Models were developed using 3754 hand-labeled advanced imaging studies in 2 phases: phase 1 focused on spine metastases, and phase 2 generalized to bone metastases. Standard McRae's line performance metrics were evaluated and compared across all stages and tasks. In the lexical detection, a simple RegEx achieved the highest performance (sensitivity 98.4%, specificity 97.6%, F1 = 0.965), followed by NYUTron (sensitivity 96.8%, specificity 89.9%, and F1 = 0.787). For the clinical referral task, RegEx also demonstrated superior performance (sensitivity 92.3%, specificity 87.5%, and F1 = 0.936), followed by a fine-tuned NYUTron model (sensitivity 90.0%, specificity 66.7%, and F1 = 0.750). An NLP-based automated referral system can accurately identify patients with bone metastases requiring specialist evaluation. A simple RegEx model excels in syntax-based identification and expert-informed rule generation for efficient referral patient recommendation in comparison with advanced NLP models. This system could significantly reduce missed follow-ups and enhance timely intervention for patients with bone metastases.

Radiomics in pediatric brain tumors: from images to insights.

Rai P, Ahmed S, Mahajan A

pubmed logopapersAug 15 2025
Radiomics has emerged as a promising non-invasive imaging approach in pediatric neuro-oncology, offering the ability to extract high-dimensional quantitative features from routine MRI to support diagnosis, risk stratification, molecular characterization, and outcome prediction. Pediatric brain tumors, which differ significantly from adult tumors in biology and imaging appearance, present unique diagnostic and prognostic challenges. By integrating radiomics with machine learning algorithms, studies have demonstrated strong performance in classifying tumor types such as medulloblastoma, ependymoma, and gliomas, and predicting molecular subgroups and mutations such as H3K27M and BRAF. Recent studies combining radiomics with machine learning algorithms - including support vector machines, random forests, and deep learning CNNs - have demonstrated promising performance, with AUCs ranging from 0.75 to 0.98 for tumor classification and 0.77 to 0.88 for molecular subgroup prediction, across cohorts from 50 to over 450 patients, with internal cross-validation and external validation in some cases. In resource-limited settings or regions with limited radiologist manpower, radiomics-based tools could help augment diagnostic accuracy and consistency, serving as decision support to prioritize patients for further evaluation or biopsy. Emerging applications such as radio-immunomics and radio-pathomics may further enhance understanding of tumor biology but remain investigational. Despite its potential, clinical translation faces notable barriers, including limited pediatric-specific datasets, variable imaging protocols, and the lack of standardized, reproducible workflows. Multi-institutional collaboration, harmonized pipelines, and prospective validation are essential next steps. Radiomics should be viewed as a supplementary tool that complements existing clinical and pathological frameworks, supporting more informed and equitable care in pediatric brain tumor management.

Aortic atherosclerosis evaluation using deep learning based on non-contrast CT: A retrospective multi-center study.

Yang M, Lyu J, Xiong Y, Mei A, Hu J, Zhang Y, Wang X, Bian X, Huang J, Li R, Xing X, Su S, Gao J, Lou X

pubmed logopapersAug 15 2025
Non-contrast CT (NCCT) is widely used in clinical practice and holds potential for large-scale atherosclerosis screening, yet its application in detecting and grading aortic atherosclerosis remains limited. To address this, we propose Aortic-AAE, an automated segmentation system based on a cascaded attention mechanism within the nnU-Net framework. The cascaded attention module enhances feature learning across complex anatomical structures, outperforming existing attention modules. Integrated preprocessing and post-processing ensure anatomical consistency and robustness across multi-center data. Trained on 435 labeled NCCT scans from three centers and validated on 388 independent cases, Aortic-AAE achieved 81.12% accuracy in aortic stenosis classification and 92.37% in Agatston scoring of calcified plaques, surpassing five state-of-the-art models. This study demonstrates the feasibility of using deep learning for accurate detection and grading of aortic atherosclerosis from NCCT, supporting improved diagnostic decisions and enhanced clinical workflows.

Deep learning radiomics of elastography for diagnosing compensated advanced chronic liver disease: an international multicenter study.

Lu X, Zhang H, Kuroda H, Garcovich M, de Ledinghen V, Grgurević I, Linghu R, Ding H, Chang J, Wu M, Feng C, Ren X, Liu C, Song T, Meng F, Zhang Y, Fang Y, Ma S, Wang J, Qi X, Tian J, Yang X, Ren J, Liang P, Wang K

pubmed logopapersAug 15 2025
Accurate, noninvasive diagnosis of compensated advanced chronic liver disease (cACLD) is essential for effective clinical management but remains challenging. This study aimed to develop a deep learning-based radiomics model using international multicenter data and to evaluate its performance by comparing it to the two-dimensional shear wave elastography (2D-SWE) cut-off method covering multiple countries or regions, etiologies, and ultrasound device manufacturers. This retrospective study included 1937 adult patients with chronic liver disease due to hepatitis B, hepatitis C, or metabolic dysfunction-associated steatotic liver disease. All patients underwent 2D-SWE imaging and liver biopsy at 17 centers across China, Japan, and Europe using devices from three manufacturers (SuperSonic Imagine, General Electric, and Mindray). The proposed generalized deep learning radiomics of elastography model integrated both elastographic images and liver stiffness measurements and was trained and tested on stratified internal and external datasets. A total of 1937 patients with 9472 2D-SWE images were included in the statistical analysis. Compared to 2D-SWE, the model achieved a higher area under the receiver operating characteristic curve (AUC) (0.89 vs 0.83, P = 0.025). It also achieved a highly consistent diagnosis across all subanalyses (P values: 0.21-0.91), whereas 2D-SWE exhibited different AUCs in the country or region (P < 0.001) and etiology (P = 0.005) subanalyses but not in the manufacturer subanalysis (P = 0.24). The model demonstrated more accurate and robust performance in noninvasive cACLD diagnosis than 2D-SWE across different countries or regions, etiologies, and manufacturers.
Page 88 of 3513502 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.