Sort by:
Page 87 of 1341332 results

Rethinking Decoder Design: Improving Biomarker Segmentation Using Depth-to-Space Restoration and Residual Linear Attention

Saad Wazir, Daeyoung Kim

arxiv logopreprintJun 23 2025
Segmenting biomarkers in medical images is crucial for various biotech applications. Despite advances, Transformer and CNN based methods often struggle with variations in staining and morphology, limiting feature extraction. In medical image segmentation, where datasets often have limited sample availability, recent state-of-the-art (SOTA) methods achieve higher accuracy by leveraging pre-trained encoders, whereas end-to-end methods tend to underperform. This is due to challenges in effectively transferring rich multiscale features from encoders to decoders, as well as limitations in decoder efficiency. To address these issues, we propose an architecture that captures multi-scale local and global contextual information and a novel decoder design, which effectively integrates features from the encoder, emphasizes important channels and regions, and reconstructs spatial dimensions to enhance segmentation accuracy. Our method, compatible with various encoders, outperforms SOTA methods, as demonstrated by experiments on four datasets and ablation studies. Specifically, our method achieves absolute performance gains of 2.76% on MoNuSeg, 3.12% on DSB, 2.87% on Electron Microscopy, and 4.03% on TNBC datasets compared to existing SOTA methods. Code: https://github.com/saadwazir/MCADS-Decoder

Deep learning-quantified body composition from positron emission tomography/computed tomography and cardiovascular outcomes: a multicentre study.

Miller RJH, Yi J, Shanbhag A, Marcinkiewicz A, Patel KK, Lemley M, Ramirez G, Geers J, Chareonthaitawee P, Wopperer S, Berman DS, Di Carli M, Dey D, Slomka PJ

pubmed logopapersJun 23 2025
Positron emission tomography (PET)/computed tomography (CT) myocardial perfusion imaging (MPI) is a vital diagnostic tool, especially in patients with cardiometabolic syndrome. Low-dose CT scans are routinely performed with PET for attenuation correction and potentially contain valuable data about body tissue composition. Deep learning and image processing were combined to automatically quantify skeletal muscle (SM), bone and adipose tissue from these scans and then evaluate their associations with death or myocardial infarction (MI). In PET MPI from three sites, deep learning quantified SM, bone, epicardial adipose tissue (EAT), subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), and intermuscular adipose tissue (IMAT). Sex-specific thresholds for abnormal values were established. Associations with death or MI were evaluated using unadjusted and multivariable models adjusted for clinical and imaging factors. This study included 10 085 patients, with median age 68 (interquartile range 59-76) and 5767 (57%) male. Body tissue segmentations were completed in 102 ± 4 s. Higher VAT density was associated with an increased risk of death or MI in both unadjusted [hazard ratio (HR) 1.40, 95% confidence interval (CI) 1.37-1.43] and adjusted (HR 1.24, 95% CI 1.19-1.28) analyses, with similar findings for IMAT, SAT, and EAT. Patients with elevated VAT density and reduced myocardial flow reserve had a significantly increased risk of death or MI (adjusted HR 2.49, 95% CI 2.23-2.77). Volumetric body tissue composition can be obtained rapidly and automatically from standard cardiac PET/CT. This new information provides a detailed, quantitative assessment of sarcopenia and cardiometabolic health for physicians.

Physiological Response of Tissue-Engineered Vascular Grafts to Vasoactive Agents in an Ovine Model.

Guo M, Villarreal D, Watanabe T, Wiet M, Ulziibayar A, Morrison A, Nelson K, Yuhara S, Hussaini SF, Shinoka T, Breuer C

pubmed logopapersJun 23 2025
Tissue-engineered vascular grafts (TEVGs) are emerging as promising alternatives to synthetic grafts, particularly in pediatric cardiovascular surgery. While TEVGs have demonstrated growth potential, compliance, and resistance to calcification, their functional integration into the circulation, especially their ability to respond to physiological stimuli, remains underexplored. Vasoreactivity, the dynamic contraction or dilation of blood vessels in response to vasoactive agents, is a key property of native vessels that affects systemic hemodynamics and long-term vascular function. This study aimed to develop and validate an <i>in vivo</i> protocol to assess the vasoreactive capacity of TEVGs implanted as inferior vena cava (IVC) interposition grafts in a large animal model. Bone marrow-seeded TEVGs were implanted in the thoracic IVC of Dorset sheep. A combination of intravascular ultrasound (IVUS) imaging and invasive hemodynamic monitoring was used to evaluate vessel response to norepinephrine (NE) and sodium nitroprusside (SNP). Cross-sectional luminal area changes were measured using a custom Python-based software package (VIVUS) that leverages deep learning for IVUS image segmentation. Physiological parameters including blood pressure, heart rate, and cardiac output were continuously recorded. NE injections induced significant, dose-dependent vasoconstriction of TEVGs, with peak reductions in luminal area averaging ∼15% and corresponding increases in heart rate and mean arterial pressure. Conversely, SNP did not elicit measurable vasodilation in TEVGs, likely due to structural differences in venous tissue, the low-pressure environment of the thoracic IVC, and systemic confounders. Overall, the TEVGs demonstrated active, rapid, and reversible vasoconstrictive behavior in response to pharmacologic stimuli. This study presents a novel <i>in vivo</i> method for assessing TEVG vasoreactivity using real-time imaging and hemodynamic data. TEVGs possess functional vasoactivity, suggesting they may play an active role in modulating venous return and systemic hemodynamics. These findings are particularly relevant for Fontan patients and other scenarios where dynamic venous regulation is critical. Future work will compare TEVG vasoreactivity with native veins and synthetic grafts to further characterize their physiological integration and potential clinical benefits.

Pre-Trained LLM is a Semantic-Aware and Generalizable Segmentation Booster

Fenghe Tang, Wenxin Ma, Zhiyang He, Xiaodong Tao, Zihang Jiang, S. Kevin Zhou

arxiv logopreprintJun 22 2025
With the advancement of Large Language Model (LLM) for natural language processing, this paper presents an intriguing finding: a frozen pre-trained LLM layer can process visual tokens for medical image segmentation tasks. Specifically, we propose a simple hybrid structure that integrates a pre-trained, frozen LLM layer within the CNN encoder-decoder segmentation framework (LLM4Seg). Surprisingly, this design improves segmentation performance with a minimal increase in trainable parameters across various modalities, including ultrasound, dermoscopy, polypscopy, and CT scans. Our in-depth analysis reveals the potential of transferring LLM's semantic awareness to enhance segmentation tasks, offering both improved global understanding and better local modeling capabilities. The improvement proves robust across different LLMs, validated using LLaMA and DeepSeek.

Deep Learning-based Alignment Measurement in Knee Radiographs

Zhisen Hu, Dominic Cullen, Peter Thompson, David Johnson, Chang Bian, Aleksei Tiulpin, Timothy Cootes, Claudia Lindner

arxiv logopreprintJun 22 2025
Radiographic knee alignment (KA) measurement is important for predicting joint health and surgical outcomes after total knee replacement. Traditional methods for KA measurements are manual, time-consuming and require long-leg radiographs. This study proposes a deep learning-based method to measure KA in anteroposterior knee radiographs via automatically localized knee anatomical landmarks. Our method builds on hourglass networks and incorporates an attention gate structure to enhance robustness and focus on key anatomical features. To our knowledge, this is the first deep learning-based method to localize over 100 knee anatomical landmarks to fully outline the knee shape while integrating KA measurements on both pre-operative and post-operative images. It provides highly accurate and reliable anatomical varus/valgus KA measurements using the anatomical tibiofemoral angle, achieving mean absolute differences ~1{\deg} when compared to clinical ground truth measurements. Agreement between automated and clinical measurements was excellent pre-operatively (intra-class correlation coefficient (ICC) = 0.97) and good post-operatively (ICC = 0.86). Our findings demonstrate that KA assessment can be automated with high accuracy, creating opportunities for digitally enhanced clinical workflows.

Automated detection and classification of osteolytic lesions in panoramic radiographs using CNNs and vision transformers.

van Nistelrooij N, Ghanad I, Bigdeli AK, Thiem DGE, von See C, Rendenbach C, Maistreli I, Xi T, Bergé S, Heiland M, Vinayahalingam S, Gaudin R

pubmed logopapersJun 21 2025
Diseases underlying osteolytic lesions in jaws are characterized by the absorption of bone tissue and are often asymptomatic, delaying their diagnosis. Well-defined lesions (benign cyst-like lesions) and ill-defined lesions (osteomyelitis or malignancy) can be detected early in a panoramic radiograph (PR) by an experienced examiner, but most dentists lack appropriate training. To support dentists, this study aimed to develop and evaluate deep learning models for the detection of osteolytic lesions in PRs. A dataset of 676 PRs (165 well-defined, 181 ill-defined, 330 control) was collected from the Department of Oral and Maxillofacial Surgery at Charité Berlin, Germany. The osteolytic lesions were pixel-wise segmented and labeled as well-defined or ill-defined. Four model architectures for instance segmentation (Mask R-CNN with a Swin-Tiny or ResNet-50 backbone, Mask DINO, and YOLOv5) were employed with five-fold cross-validation. Their effectiveness was evaluated with sensitivity, specificity, F1-score, and AUC and failure cases were shown. Mask R-CNN with a Swin-Tiny backbone was most effective (well-defined F1 = 0.784, AUC = 0.881; ill-defined F1 = 0.904, AUC = 0.971) and the model architectures including vision transformer components were more effective than those without. Model mistakes were observed around the maxillary sinus, at tooth extraction sites, and for radiolucent bands. Promising deep learning models were developed for the detection of osteolytic lesions in PRs, particularly those with vision transformer components (Mask R-CNN with Swin-Tiny and Mask DINO). These results underline the potential of vision transformers for enhancing the automated detection of osteolytic lesions, offering a significant improvement over traditional deep learning models.

BoneDat, a database of standardized bone morphology for in silico analyses.

Henyš P, Kuchař M

pubmed logopapersJun 20 2025
In silico analysis is key to understanding bone structure-function relationships in orthopedics and evolutionary biology, but its potential is limited by a lack of standardized, high-quality human bone morphology datasets. This absence hinders research reproducibility and the development of reliable computational models. To overcome this, BoneDat has been developed. It is a comprehensive database containing standardized bone morphology data from 278 clinical lumbopelvic CT scans (pelvis and lower spine). The dataset includes individuals aged 16 to 91, balanced by sex across ten age groups. BoneDat provides curated segmentation masks, normalized bone geometry (volumetric meshes), and reference morphology templates organized by sex and age. By offering standardized reference geometry and enabling shape normalization, BoneDat enhances the repeatability and credibility of computational models. It also allows for integrating other open datasets, supporting the training and benchmarking of deep learning models and accelerating their path to clinical use.

TextBraTS: Text-Guided Volumetric Brain Tumor Segmentation with Innovative Dataset Development and Fusion Module Exploration

Xiaoyu Shi, Rahul Kumar Jain, Yinhao Li, Ruibo Hou, Jingliang Cheng, Jie Bai, Guohua Zhao, Lanfen Lin, Rui Xu, Yen-wei Chen

arxiv logopreprintJun 20 2025
Deep learning has demonstrated remarkable success in medical image segmentation and computer-aided diagnosis. In particular, numerous advanced methods have achieved state-of-the-art performance in brain tumor segmentation from MRI scans. While recent studies in other medical imaging domains have revealed that integrating textual reports with visual data can enhance segmentation accuracy, the field of brain tumor analysis lacks a comprehensive dataset that combines radiological images with corresponding textual annotations. This limitation has hindered the exploration of multimodal approaches that leverage both imaging and textual data. To bridge this critical gap, we introduce the TextBraTS dataset, the first publicly available volume-level multimodal dataset that contains paired MRI volumes and rich textual annotations, derived from the widely adopted BraTS2020 benchmark. Building upon this novel dataset, we propose a novel baseline framework and sequential cross-attention method for text-guided volumetric medical image segmentation. Through extensive experiments with various text-image fusion strategies and templated text formulations, our approach demonstrates significant improvements in brain tumor segmentation accuracy, offering valuable insights into effective multimodal integration techniques. Our dataset, implementation code, and pre-trained models are publicly available at https://github.com/Jupitern52/TextBraTS.

Significance of Papillary and Trabecular Muscular Volume in Right Ventricular Volumetry with Cardiac MR Imaging.

Shibagaki Y, Oka H, Imanishi R, Shimada S, Nakau K, Takahashi S

pubmed logopapersJun 20 2025
Pulmonary valve regurgitation after repaired Tetralogy of Fallot (TOF) or double-outlet right ventricle (DORV) causes hypertrophy and papillary muscle enlargement. Cardiac magnetic resonance imaging (CMR) can evaluate the right ventricular (RV) dilatation, but the effect of trabecular and papillary muscle (TPM) exclusion on RV volume for TOF or DORV reoperation decision is unclear. Twenty-three patients with repaired TOF or DORV, and 19 healthy controls aged ≥15, underwent CMR from 2012 to 2022. TPM volume is measured by artificial intelligence. Reoperation was considered when RV end-diastolic volume index (RVEDVI) >150 mL/m<sup>2</sup> or RV end-systolic volume index (RVESVI) >80 mL/m<sup>2</sup>. RV volumes were higher in the disease group than controls (P α 0.001). RV mass and TPM volumes were higher in the disease group (P α 0.001). The reduction rate of RV volumes due to the exclusion of TPM volume was 6.3% (2.1-10.5), 11.7% (6.9-13.8), and 13.9% (9.5-19.4) in the control, volume load, and volume α pressure load groups, respectively. TPM/RV volumes were higher in the volume α pressure load group (control: 0.07 g/mL, volume: 0.14 g/mL, volume α pressure: 0.17 g/mL), and correlated with QRS duration (R α 0.77). In 3 patients in the volume α pressure, RV volume included TPM was indicated for reoperation, but when RV volume was reduced by TPM removal, reoperation was no indicated. RV volume measurements, including TPM in volume α pressure load, may help determine appropriate volume recommendations for reoperation.

TextBraTS: Text-Guided Volumetric Brain Tumor Segmentation with Innovative Dataset Development and Fusion Module Exploration

Xiaoyu Shi, Rahul Kumar Jain, Yinhao Li, Ruibo Hou, Jingliang Cheng, Jie Bai, Guohua Zhao, Lanfen Lin, Rui Xu, Yen-wei Chen

arxiv logopreprintJun 20 2025
Deep learning has demonstrated remarkable success in medical image segmentation and computer-aided diagnosis. In particular, numerous advanced methods have achieved state-of-the-art performance in brain tumor segmentation from MRI scans. While recent studies in other medical imaging domains have revealed that integrating textual reports with visual data can enhance segmentation accuracy, the field of brain tumor analysis lacks a comprehensive dataset that combines radiological images with corresponding textual annotations. This limitation has hindered the exploration of multimodal approaches that leverage both imaging and textual data. To bridge this critical gap, we introduce the TextBraTS dataset, the first publicly available volume-level multimodal dataset that contains paired MRI volumes and rich textual annotations, derived from the widely adopted BraTS2020 benchmark. Building upon this novel dataset, we propose a novel baseline framework and sequential cross-attention method for text-guided volumetric medical image segmentation. Through extensive experiments with various text-image fusion strategies and templated text formulations, our approach demonstrates significant improvements in brain tumor segmentation accuracy, offering valuable insights into effective multimodal integration techniques. Our dataset, implementation code, and pre-trained models are publicly available at https://github.com/Jupitern52/TextBraTS.
Page 87 of 1341332 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.