Sort by:
Page 87 of 2382379 results

DRIMV_TSK: An Interpretable Surgical Evaluation Model for Incomplete Multi-View Rectal Cancer Data

Wei Zhang, Zi Wang, Hanwen Zhou, Zhaohong Deng, Weiping Ding, Yuxi Ge, Te Zhang, Yuanpeng Zhang, Kup-Sze Choi, Shitong Wang, Shudong Hu

arxiv logopreprintJun 21 2025
A reliable evaluation of surgical difficulty can improve the success of the treatment for rectal cancer and the current evaluation method is based on clinical data. However, more data about rectal cancer can be collected with the development of technology. Meanwhile, with the development of artificial intelligence, its application in rectal cancer treatment is becoming possible. In this paper, a multi-view rectal cancer dataset is first constructed to give a more comprehensive view of patients, including the high-resolution MRI image view, pressed-fat MRI image view, and clinical data view. Then, an interpretable incomplete multi-view surgical evaluation model is proposed, considering that it is hard to obtain extensive and complete patient data in real application scenarios. Specifically, a dual representation incomplete multi-view learning model is first proposed to extract the common information between views and specific information in each view. In this model, the missing view imputation is integrated into representation learning, and second-order similarity constraint is also introduced to improve the cooperative learning between these two parts. Then, based on the imputed multi-view data and the learned dual representation, a multi-view surgical evaluation model with the TSK fuzzy system is proposed. In the proposed model, a cooperative learning mechanism is constructed to explore the consistent information between views, and Shannon entropy is also introduced to adapt the view weight. On the MVRC dataset, we compared it with several advanced algorithms and DRIMV_TSK obtained the best results.

BoneDat, a database of standardized bone morphology for in silico analyses.

Henyš P, Kuchař M

pubmed logopapersJun 20 2025
In silico analysis is key to understanding bone structure-function relationships in orthopedics and evolutionary biology, but its potential is limited by a lack of standardized, high-quality human bone morphology datasets. This absence hinders research reproducibility and the development of reliable computational models. To overcome this, BoneDat has been developed. It is a comprehensive database containing standardized bone morphology data from 278 clinical lumbopelvic CT scans (pelvis and lower spine). The dataset includes individuals aged 16 to 91, balanced by sex across ten age groups. BoneDat provides curated segmentation masks, normalized bone geometry (volumetric meshes), and reference morphology templates organized by sex and age. By offering standardized reference geometry and enabling shape normalization, BoneDat enhances the repeatability and credibility of computational models. It also allows for integrating other open datasets, supporting the training and benchmarking of deep learning models and accelerating their path to clinical use.

Automatic Multi-Task Segmentation and Vulnerability Assessment of Carotid Plaque on Contrast-Enhanced Ultrasound Images and Videos via Deep Learning.

Hu B, Zhang H, Jia C, Chen K, Tang X, He D, Zhang L, Gu S, Chen J, Zhang J, Wu R, Chen SL

pubmed logopapersJun 20 2025
Intraplaque neovascularization (IPN) within carotid plaque is a crucial indicator of plaque vulnerability. Contrast-enhanced ultrasound (CEUS) is a valuable tool for assessing IPN by evaluating the location and quantity of microbubbles within the carotid plaque. However, this task is typically performed by experienced radiologists. Here we propose a deep learning-based multi-task model for the automatic segmentation and IPN grade classification of carotid plaque on CEUS images and videos. We also compare the performance of our model with that of radiologists. To simulate the clinical practice of radiologists, who often use CEUS videos with dynamic imaging to track microbubble flow and identify IPN, we develop a workflow for plaque vulnerability assessment using CEUS videos. Our multi-task model outperformed individually trained segmentation and classification models, achieving superior performance in IPN grade classification based on CEUS images. Specifically, our model achieved a high segmentation Dice coefficient of 84.64% and a high classification accuracy of 81.67%. Moreover, our model surpassed the performance of junior and medium-level radiologists, providing more accurate IPN grading of carotid plaque on CEUS images. For CEUS videos, our model achieved a classification accuracy of 80.00% in IPN grading. Overall, our multi-task model demonstrates great performance in the automatic, accurate, objective, and efficient IPN grading in both CEUS images and videos. This work holds significant promise for enhancing the clinical diagnosis of plaque vulnerability associated with IPN in CEUS evaluations.

The diagnostic accuracy of MRI radiomics in axillary lymph node metastasis prediction: a systematic review and meta-analysis.

Motiei M, Mansouri SS, Tamimi A, Farokhi S, Fakouri A, Rassam K, Sedighi-Pirsaraei N, Hassanzadeh-Rad A

pubmed logopapersJun 20 2025
Breast cancer is the most prevalent malignancy in women and a leading cause of mortality. Accurate assessment of axillary lymph node metastasis (LNM) is critical for breast cancer management. Exploring non-invasive methods such as radiomics for the detection of LNM is highly important. We systematically searched Pubmed, Embase, Scopus, Web of Science and google scholar until 11 March 2024. To assess the risk of bias and quality of studies, we utilized the quality assessment of diagnostic accuracy studies (QUADAS) tool as well as the radiomics quality score (RQS). Area under the curve (AUC), sensitivity, specificity and accuracy were determined for each study to evaluate the diagnostic accuracy of radiomics in magnetic resonance imaging (MRI) for detecting LNM in patients with breast cancer. This meta-analysis of 20 studies (5072 patients) demonstrated an overall AUC of 0.83 (95% confidence interval (CI): 0.80-0.86). Subgroup analysis revealed a trend towards higher specificity when radiomics was combined with clinical factors (0.83) compared to radiomics alone (0.79). Sensitivity analysis confirmed the robustness of the findings and publication bias was not evident. The radiomics models increased the likelihood of a positive LNM outcome from 37% to 73.2% when initial probability was positive and decreased the likelihood to 8% when initial probability was negative, highlighting their potential clinical utility. Radiomics as a non-invasive method demonstrates strong potential for detecting LNM in breast cancer, offering clinical promise. However, further standardization and validation are needed in future studies.

Impact of ablation on regional strain from 4D computed tomography in the left atrium.

Mehringer N, Severance L, Park A, Ho G, McVeigh E

pubmed logopapersJun 20 2025
Ablation for atrial fibrillation targets an arrhythmogenic substrate in the left atrium (LA) myocardium with therapeutic energy, resulting in a scar tissue. Although a global LA function typically improves after ablation, the injured tissue is stiffer and non-contractile. The local functional impact of ablation has not been thoroughly investigated. This study retrospectively analyzed the LA mechanics of 15 subjects who received a four-dimensional computed tomography (4DCT) scan pre- and post-ablation for atrial fibrillation. LA volumes were automatically segmented at every frame by a trained neural network and converted into surface meshes. A local endocardial strain was computed at a resolution of 2 mm from the deforming meshes. The LA endocardial surface was automatically divided into five walls and further into 24 sub-segments using the left atrial positioning system. Intraoperative notes gathered during the ablation procedure informed which regions received ablative treatment. In an average of 18 months after ablation, the strain is decreased by 16.3% in the septal wall and by 18.3% in the posterior wall. In subjects who were imaged in sinus rhythm both before and after the procedure, the effect of ablation reduced the regional strain by 15.3% (p = 0.012). Post-ablation strain maps demonstrated spatial patterns of reduced strain which matched the ablation pattern. This study demonstrates the capability of 4DCT to capture high-resolution changes in the left atrial strain in response to tissue damage and explores the quantification of a regionally reduced LA function from the scar tissue.

Radiological data processing system: lifecycle management and annotation.

Bobrovskaya T, Vasilev Y, Vladzymyrskyy A, Omelyanskaya O, Kosov P, Krylova E, Ponomarenko A, Burtsev T, Savkina E, Kodenko M, Kasimov S, Medvedev K, Kovalchuk A, Zinchenko V, Rumyantsev D, Kazarinova V, Semenov S, Arzamasov K

pubmed logopapersJun 20 2025
To develop a platform for automated processing of radiological datasets that operates independently of medical information systems. The platform maintains datasets throughout their lifecycle, from data retrieval to annotation and presentation. The platform employs a modular structure in which modules can operate independently or in conjunction. Each module sequentially processes output from the preceding module. The platform incorporates a local database containing textual study protocols, a radiology information system (RIS), and storage for labeled studies and reports. A platform equipped with local permanent and temporary file storages facilitates radiological datasets processing. The platform's modules enable data search, extraction, anonymization, annotation, generation of annotated files, and standardized documentation of datasets. The platform provides a comprehensive workflow for radiological dataset management and is currently operational at the Center for Diagnostics and Telemedicine. Future development will focus on expanding platform functionality.

Artificial intelligence-based tumor size measurement on mammography: agreement with pathology and comparison with human readers' assessments across multiple imaging modalities.

Kwon MR, Kim SH, Park GE, Mun HS, Kang BJ, Kim YT, Yoon I

pubmed logopapersJun 20 2025
To evaluate the agreement between artificial intelligence (AI)-based tumor size measurements of breast cancer and the final pathology and compare these results with those of other imaging modalities. This retrospective study included 925 women (mean age, 55.3 years ± 11.6) with 936 breast cancers, who underwent digital mammography, breast ultrasound, and magnetic resonance imaging before breast cancer surgery. AI-based tumor size measurement was performed on post-processed mammographic images, outlining areas with AI abnormality scores of 10, 50, and 90%. Absolute agreement between AI-based tumor sizes, image modalities, and histopathology was assessed using intraclass correlation coefficient (ICC) analysis. Concordant and discordant cases between AI measurements and histopathologic examinations were compared. Tumor size with an abnormality score of 50% showed the highest agreement with histopathologic examination (ICC = 0.54, 95% confidential interval [CI]: 0.49-0.59), showing comparable agreement with mammography (ICC = 0.54, 95% CI: 0.48-0.60, p = 0.40). For ductal carcinoma in situ and human epidermal growth factor receptor 2-positive cancers, AI revealed a higher agreement than that of mammography (ICC = 0.76, 95% CI: 0.67-0.84 and ICC = 0.73, 95% CI: 0.52-0.85). Overall, 52.0% (487/936) of cases were discordant, with these cases more commonly observed in younger patients with dense breasts, multifocal malignancies, lower abnormality scores, and different imaging characteristics. AI-based tumor size measurements with abnormality scores of 50% showed moderate agreement with histopathology but demonstrated size discordance in more than half of the cases. While comparable to mammography, its limitations emphasize the need for further refinement and research.

MVKD-Trans: A Multi-View Knowledge Distillation Vision Transformer Architecture for Breast Cancer Classification Based on Ultrasound Images.

Ling D, Jiao X

pubmed logopapersJun 20 2025
Breast cancer is the leading cancer threatening women's health. In recent years, deep neural networks have outperformed traditional methods in terms of both accuracy and efficiency for breast cancer classification. However, most ultrasound-based breast cancer classification methods rely on single-perspective information, which may lead to higher misdiagnosis rates. In this study, we propose a multi-view knowledge distillation vision transformer architecture (MVKD-Trans) for the classification of benign and malignant breast tumors. We utilize multi-view ultrasound images of the same tumor to capture diverse features. Additionally, we employ a shuffle module for feature fusion, extracting channel and spatial dual-attention information to improve the model's representational capability. Given the limited computational capacity of ultrasound devices, we also utilize knowledge distillation (KD) techniques to compress the multi-view network into a single-view network. The results show that the accuracy, area under the ROC curve (AUC), sensitivity, specificity, precision, and F1 score of the model are 88.15%, 91.23%, 81.41%, 90.73%, 78.29%, and 79.69%, respectively. The superior performance of our approach, compared to several existing models, highlights its potential to significantly enhance the understanding and classification of breast cancer.

Robust Radiomic Signatures of Intervertebral Disc Degeneration from MRI.

McSweeney T, Tiulpin A, Kowlagi N, Määttä J, Karppinen J, Saarakkala S

pubmed logopapersJun 20 2025
A retrospective analysis. The aim of this study was to identify a robust radiomic signature from deep learning segmentations for intervertebral disc (IVD) degeneration classification. Low back pain (LBP) is the most common musculoskeletal symptom worldwide and IVD degeneration is an important contributing factor. To improve the quantitative phenotyping of IVD degeneration from T2-weighted magnetic resonance imaging (MRI) and better understand its relationship with LBP, multiple shape and intensity features have been investigated. IVD radiomics have been less studied but could reveal sub-visual imaging characteristics of IVD degeneration. We used data from Northern Finland Birth Cohort 1966 members who underwent lumbar spine T2-weighted MRI scans at age 45-47 (n=1397). We used a deep learning model to segment the lumbar spine IVDs and extracted 737 radiomic features, as well as calculating IVD height index and peak signal intensity difference. Intraclass correlation coefficients across image and mask perturbations were calculated to identify robust features. Sparse partial least squares discriminant analysis was used to train a Pfirrmann grade classification model. The radiomics model had balanced accuracy of 76.7% (73.1-80.3%) and Cohen's Kappa of 0.70 (0.67-0.74), compared to 66.0% (62.0-69.9%) and 0.55 (0.51-0.59) for an IVD height index and peak signal intensity model. 2D sphericity and interquartile range emerged as radiomics-based features that were robust and highly correlated to Pfirrmann grade (Spearman's correlation coefficients of -0.72 and -0.77 respectively). Based on our findings these radiomic signatures could serve as alternatives to the conventional indices, representing a significant advance in the automated quantitative phenotyping of IVD degeneration from standard-of-care MRI.

Artificial intelligence-assisted decision-making in third molar assessment using ChatGPT: is it really a valid tool?

Grinberg N, Ianculovici C, Whitefield S, Kleinman S, Feldman S, Peleg O

pubmed logopapersJun 20 2025
Artificial intelligence (AI) is becoming increasingly popular in medicine. The current study aims to investigate whether an AI-based chatbot, such as ChatGPT, could be a valid tool for assisting in decision-making when assessing mandibular third molars before extractions. Panoramic radiographs were collected from a publicly available library. Mandibular third molars were assessed by position and depth. Two specialists evaluated each case regarding the need for CBCT referral, followed by introducing all cases to ChatGPT under a uniform script to decide the need for further CBCT radiographs. The process was performed first without any guidelines, Second, after introducing the guidelines presented by Rood et al. (1990), and third, with additional test cases. ChatGPT and a specialist's decision were compared and analyzed using Cohen's kappa test and the Cochrane-Mantel--Haenszel test to consider the effect of different tooth positions. All analyses were made under a 95% confidence level. The study evaluated 184 molars. Without any guidelines, ChatGPT correlated with the specialist in 49% of cases, with no statistically significant agreement (kappa < 0.1), followed by 70% and 91% with moderate (kappa = 0.39) and near-perfect (kappa = 0.81) agreement, respectively, after the second and third rounds (p < 0.05). The high correlation between the specialist and the chatbot was preserved when analyzed by the different tooth locations and positions (p < 0.01). ChatGPT has shown the ability to analyze third molars prior to surgical interventions using accepted guidelines with substantial correlation to specialists.
Page 87 of 2382379 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.