Sort by:
Page 85 of 99990 results

Cone-beam computed tomography (CBCT) image-quality improvement using a denoising diffusion probabilistic model conditioned by pseudo-CBCT of pelvic regions.

Hattori M, Chai H, Hiraka T, Suzuki K, Yuasa T

pubmed logopapersJun 1 2025
Cone-beam computed tomography (CBCT) is widely used in radiotherapy to image patient configuration before treatment but its image quality is lower than planning CT due to scattering, motion, and reconstruction methods. This reduces the accuracy of Hounsfield units (HU) and limits its use in adaptive radiation therapy (ART). However, synthetic CT (sCT) generation using deep learning methods for CBCT intensity correction faces challenges due to deformation. To address these issues, we propose enhancing CBCT quality using a conditional denoising diffusion probability model (CDDPM), which is trained on pseudo-CBCT created by adding pseudo-scatter to planning CT. The CDDPM transforms CBCT into high-quality sCT, improving HU accuracy while preserving anatomical configuration. The performance evaluation of the proposed sCT showed a reduction in mean absolute error (MAE) from 81.19 HU for CBCT to 24.89 HU for the sCT. Peak signal-to-noise ratio (PSNR) improved from 31.20 dB for CBCT to 33.81 dB for the sCT. The Dice and Jaccard coefficients between CBCT and sCT for the colon, prostate, and bladder ranged from 0.69 to 0.91. When compared to other deep learning models, the proposed sCT outperformed them in terms of accuracy and anatomical preservation. The dosimetry analysis for prostate cancer revealed a dose error of over 10% with CBCT but nearly 0% with the sCT. Gamma pass rates for the proposed sCT exceeded 90% for all dose criteria, indicating high agreement with CT-based dose distributions. These results show that the proposed sCT improves image quality, dosimetry accuracy, and treatment planning, advancing ART for pelvic cancer.

Discriminating Clear Cell From Non-Clear Cell Renal Cell Carcinoma: A Machine Learning Approach Using Contrast-enhanced Ultrasound Radiomics.

Liang M, Wu S, Ou B, Wu J, Qiu H, Zhao X, Luo B

pubmed logopapersMay 31 2025
The aim of this investigation is to assess the clinical usefulness of a machine learning model using contrast-enhanced ultrasound (CEUS) radiomics in discriminating clear cell renal cell carcinoma (ccRCC) from non-ccRCC. A total of 292 patients with pathologically confirmed RCC subtypes underwent CEUS (development set. n = 231; validation set, n = 61) in a retrospective study. Radiomics features were derived from CEUS images acquired during the cortical and parenchymal phases. Radiomics models were developed using logistic regression (LR), support vector machine, decision tree, naive Bayes, gradient boosting machine, and random forest. The suitable model was identified based on the area under the receiver operating characteristic curve (AUC). Appropriate clinical CEUS features were identified through univariate and multivariate LR analyses to develop a clinical model. By integrating radiomics and clinical CEUS features, a combined model was established. A comprehensive evaluation of the models' performance was conducted. After the reduction and selection process were applied to 2250 radiomics features, the final set of 8 features was considered valuable. Among the models, the LR model had the highest performance on the validation set and showed good robustness. In both the development and validation sets, both the radiomics (AUC, 0.946 and 0.927) and the combined models (AUC, 0.949 and 0.925) outperformed the clinical model (AUC, 0.851 and 0.768), showing higher AUC values (all p < 0.05). The combined model exhibited favorable calibration and clinical benefit. The combined model integrating clinical CEUS and CEUS radiomics features demonstrated good diagnostic performance in discriminating ccRCC from non-ccRCC.

From Guidelines to Intelligence: How AI Refines Thyroid Nodule Biopsy Decisions.

Zeng W, He Y, Xu R, Mai W, Chen Y, Li S, Yi W, Ma L, Xiong R, Liu H

pubmed logopapersMay 31 2025
To evaluate the value of combining American College of Radiology (ACR) Thyroid Imaging Reporting and Data System (TI-RADS) with the Demetics ultrasound diagnostic system in reducing the rate of fine-needle aspiration (FNA) biopsies for thyroid nodules. A retrospective study analyzed 548 thyroid nodules from 454 patients, all meeting ACR TI-RADS guidelines (category ≥3 and diameter ≥10 mm) for FNA. Nodule was reclassified using the combined ACR TI-RADS and Demetics system (De TI-RADS), and the biopsy rates were compared. Using ACR TI-RADS alone, the biopsy rate was 70.6% (387/548), with a positive predictive value (PPV) of 52.5% (203/387), an unnecessary biopsy rate of 47.5% (184/387) and a missed diagnosis rate of 11.0% (25/228). Incorporating Demetics reduced the biopsy rate to 48.1% (264/548), the unnecessary biopsy rate to 17.4% (46/265) and the missed diagnosis rate to 4.4% (10/228), while increasing PPV to 82.6% (218/264). All differences between ACR TI-RADS and De TI-RADS were statistically significant (p < 0.05). The integration of ACR TI-RADS with the Demetics system improves nodule risk assessment by enhancing diagnostic and efficiency. This approach reduces unnecessary biopsies and missed diagnoses while increasing PPV, offering a more reliable tool for clinicians and patients.

Study of AI algorithms on mpMRI and PHI for the diagnosis of clinically significant prostate cancer.

Luo Z, Li J, Wang K, Li S, Qian Y, Xie W, Wu P, Wang X, Han J, Zhu W, Wang H, He Y

pubmed logopapersMay 31 2025
To study the feasibility of multiple factors in improving the diagnostic accuracy of clinically significant prostate cancer (csPCa). A retrospective study with 131 patients analyzes age, PSA, PHI and pathology. Patients with ISUP > 2 were classified as csPCa, and others are non-csPCa. The mpMRI images were processed by a homemade AI algorithm, obtaining positive or negative AI results. Four logistic regression models were fitted, with pathological findings as the dependent variable. The predicted probability of the patients was used to test the prediction efficacy of the models. The DeLong test was performed to compare differences in the area under the receiver operating characteristic (ROC) curves (AUCs) between the models. The study includes 131 patients: 62 were diagnosed with csPCa and 69 were non-csPCa. Statically significant differences were found in age, PSA, PIRADS score, AI results, and PHI values between the 2 groups (all P ≤ 0.001). The conventional model (R<sup>2</sup> = 0.389), the AI model (R<sup>2</sup> = 0.566), and the PHI model (R<sup>2</sup> = 0.515) were compared to the full model (R<sup>2</sup> = 0.626) with ANOVA and showed statistically significant differences (all P < 0.05). The AUC of the full model (0.921 [95% CI: 0.871-0.972]) was significantly higher than that of the conventional model (P = 0.001), AI model (P < 0.001), and PHI model (P = 0.014). Combining multiple factors such as age, PSA, PIRADS score and PHI, adding AI algorithm based on mpMRI, the diagnostic accuracy of csPCa can be improved.

Relationship between spleen volume and diameter for assessment of response to treatment on CT in patients with hematologic malignancies enrolled in clinical trials.

Hasenstab KA, Lu J, Leong LT, Bossard E, Pylarinou-Sinclair E, Devi K, Cunha GM

pubmed logopapersMay 31 2025
Investigate spleen diameter (d) and volume (v) relationship in patients with hematologic malignancies (HM) by determining volumetric thresholds that best correlate to established diameter thresholds for assessing response to treatment. Exploratorily, interrogate the impact of volumetric measurements in response categories and as a predictor of response. Secondary analysis of prospectively collected clinical trial data of 382 patients with HM. Spleen diameters were computed following Lugano criteria and volumes using deep learning segmentation. d and v relationship was estimated using power regression model, volumetric thresholds ([Formula: see text]) for treatment response estimated; threshold search to determine percentual change ([Formula: see text] and minimum volumetric increase ([Formula: see text]) that maximize agreement with Lugano criteria performed. Spleen diameter and volume predictive performance for clinical response investigated using random forest model. [Formula: see text] describes the relationship between spleen diameter and volume. [Formula: see text] for splenomegaly was 546 cm³. [Formula: see text], [Formula: see text], and [Formula: see text] for assessing response resulting in highest agreement with Lugano criteria were 570 cm<sup>3</sup>, 73%, and 170 cm<sup>3</sup>, respectively. Predictive performance for response between diameter and volume were not significantly different (P=0.78). This study provides empirical spleen volume threshold and percentual changes that best correlate with diameter thresholds, i.e., Lugano criteria, for assessment of response to treatment in patients with HM. In our dataset use of spleen volumetric thresholds versus diameter thresholds resulted in similar response assessment categories and did not signal differences in predictive values for response.

MR2US-Pro: Prostate MR to Ultrasound Image Translation and Registration Based on Diffusion Models

Xudong Ma, Nantheera Anantrasirichai, Stefanos Bolomytis, Alin Achim

arxiv logopreprintMay 31 2025
The diagnosis of prostate cancer increasingly depends on multimodal imaging, particularly magnetic resonance imaging (MRI) and transrectal ultrasound (TRUS). However, accurate registration between these modalities remains a fundamental challenge due to the differences in dimensionality and anatomical representations. In this work, we present a novel framework that addresses these challenges through a two-stage process: TRUS 3D reconstruction followed by cross-modal registration. Unlike existing TRUS 3D reconstruction methods that rely heavily on external probe tracking information, we propose a totally probe-location-independent approach that leverages the natural correlation between sagittal and transverse TRUS views. With the help of our clustering-based feature matching method, we enable the spatial localization of 2D frames without any additional probe tracking information. For the registration stage, we introduce an unsupervised diffusion-based framework guided by modality translation. Unlike existing methods that translate one modality into another, we map both MR and US into a pseudo intermediate modality. This design enables us to customize it to retain only registration-critical features, greatly easing registration. To further enhance anatomical alignment, we incorporate an anatomy-aware registration strategy that prioritizes internal structural coherence while adaptively reducing the influence of boundary inconsistencies. Extensive validation demonstrates that our approach outperforms state-of-the-art methods by achieving superior registration accuracy with physically realistic deformations in a completely unsupervised fashion.

Development and interpretation of a pathomics-based model for the prediction of immune therapy response in colorectal cancer.

Luo Y, Tian Q, Xu L, Zeng D, Zhang H, Zeng T, Tang H, Wang C, Chen Y

pubmed logopapersMay 31 2025
Colorectal cancer (CRC) is the third most common malignancy and the second leading cause of cancer-related deaths worldwide, with a 5-year survival rate below 20 %. Immunotherapy, particularly immune checkpoint blockade (ICB)-based therapies, has become an important approach for CRC treatment. However, only specific patient subsets demonstrate significant clinical benefits. Although the TIDE algorithm can predict immunotherapy responses, the reliance on transcriptome sequencing data limits its clinical applicability. Recent advances in artificial intelligence and computational pathology provide new avenues for medical image analysis.In this study, we classified TCGA-CRC samples into immunotherapy responder and non-responder groups using the TIDE algorithm. Further, a pathomics model based on convolutional neural networks was constructed to directly predict immunotherapy responses from histopathological images. Single-cell analysis revealed that fibroblasts may induce immunotherapy resistance in CRC through collagen-CD44 and ITGA1 + ITGB1 signaling axes. The developed pathomics model demonstrated excellent classification performance in the test set, with an AUC of 0.88 at the patch level and 0.85 at the patient level. Moreover, key pathomics features were identified through SHAP analysis. This innovative predictive tool provides a novel method for clinical decision-making in CRC immunotherapy, with potential to optimize treatment strategies and advance precision medicine.

Accelerated proton resonance frequency-based magnetic resonance thermometry by optimized deep learning method.

Xu S, Zong S, Mei CS, Shen G, Zhao Y, Wang H

pubmed logopapersMay 31 2025
Proton resonance frequency (PRF)-based magnetic resonance (MR) thermometry plays a critical role in thermal ablation therapies through focused ultrasound (FUS). For clinical applications, accurate and rapid temperature feedback is essential to ensure both the safety and effectiveness of these treatments. This work aims to improve temporal resolution in dynamic MR temperature map reconstructions using an enhanced deep-learning method, thereby supporting the real-time monitoring required for effective FUS treatments. Five classical neural network architectures-cascade net, complex-valued U-Net, shift window transformer for MRI, real-valued U-Net, and U-Net with residual blocks-along with training-optimized methods were applied to reconstruct temperature maps from 2-fold and 4-fold undersampled k-space data. The training enhancements included pre-training/training-phase data augmentations, knowledge distillation, and a novel amplitude-phase decoupling loss function. Phantom and ex vivo tissue heating experiments were conducted using a FUS transducer. Ground truth was the complex MR images with accurate temperature changes, and datasets were manually undersampled to simulate such acceleration here. Separate testing datasets were used to evaluate real-time performance and temperature accuracy. Furthermore, our proposed deep learning-based rapid reconstruction approach was validated on a clinical dataset obtained from patients with uterine fibroids, demonstrating its clinical applicability. Acceleration factors of 1.9 and 3.7 were achieved for 2× and 4× k-space under samplings, respectively. The deep learning-based reconstruction using ResUNet incorporating the four optimizations, showed superior performance. For 2-fold acceleration, the RMSE of temperature map patches were 0.89°C and 1.15°C for the phantom and ex vivo testing datasets, respectively. The DICE coefficient for the 43°C isotherm-enclosed regions was 0.81, and the Bland-Altman analysis indicated a bias of -0.25°C with limits of agreement of ±2.16°C. In the 4-fold under-sampling case, these evaluation metrics showed approximately a 10% reduction in accuracy. Additionally, the DICE coefficient measuring the overlap between the reconstructed temperature maps (using the optimized ResUNet) and the ground truth, specifically in regions where the temperature exceeded the 43°C threshold, were 0.77 and 0.74 for the 2× and 4× under-sampling scenarios, respectively. This study demonstrates that deep learning-based reconstruction significantly enhances the accuracy and efficiency of MR thermometry, particularly in the context of FUS-based clinical treatments for uterine fibroids. This approach could also be extended to other applications such as essential tremor and prostate cancer treatments where MRI-guided FUS plays a critical role.

Assessing the value of artificial intelligence-based image analysis for pre-operative surgical planning of neck dissections and iENE detection in head and neck cancer patients.

Schmidl B, Hoch CC, Walter R, Wirth M, Wollenberg B, Hussain T

pubmed logopapersMay 30 2025
Accurate preoperative detection and analysis of lymph node metastasis (LNM) in head and neck squamous cell carcinoma (HNSCC) is essential for the surgical planning and execution of a neck dissection and may directly affect the morbidity and prognosis of patients. Additionally, predicting extranodal extension (ENE) using pre-operative imaging could be particularly valuable in oropharyngeal HPV-positive squamous cell carcinoma, enabling more accurate patient counseling, allowing the decision to favor primary chemoradiotherapy over immediate neck dissection when appropriate. Currently, radiological images are evaluated by radiologists and head and neck oncologists; and automated image interpretation is not part of the current standard of care. Therefore, the value of preoperative image recognition by artificial intelligence (AI) with the large language model (LLM) ChatGPT-4 V was evaluated in this exploratory study based on neck computed tomography (CT) images of HNSCC patients with cervical LNM, and corresponding images without LNM. The objective of this study was to firstly assess the preoperative rater accuracy by comparing clinician assessments of imaging-detected extranodal extension (iENE) and the extent of neck dissection to AI predictions, and secondly to evaluate the pathology-based accuracy by comparing AI predictions to final histopathological outcomes. 45 preoperative CT scans were retrospectively analyzed in this study: 15 cases in which a selective neck dissection (sND) was performed, 15 cases with ensuing radical neck dissection (mrND), and 15 cases without LNM (sND). Of note, image analysis was based on three single images provided to both ChatGPT-4 V and the head and neck surgeons as reviewers. Final pathological characteristics were available in all cases as HNSCC patients had undergone surgery. ChatGPT-4 V was tasked with providing the extent of LNM in the preoperative CT scans and with providing a recommendation for the extent of neck dissection and the detection of iENE. The diagnostic performance of ChatGPT-4 V was reviewed independently by two head and neck surgeons with its accuracy, sensitivity, and specificity being assessed. In this study, ChatGPT-4 V reached a sensitivity of 100% and a specificity of 34.09% in identifying the need for a radical neck dissection based on neck CT images. The sensitivity and specificity of detecting iENE was 100% and 34.15%, respectively. Both human reviewers achieved higher specificity. Notably, ChatGPT-4 V also recommended a mrND and detected iENE on CT images without any cervical LNM. In this exploratory study of 45 preoperative CT Neck scans before a neck dissection, ChatGPT-4 V substantially overestimated the degree and severity of lymph node metastasis in head and neck cancer. While these results suggest that ChatGPT-4 V may not yet be a tool providing added value for surgical planning in head and neck cancer, the unparalleled speed of analysis and well-founded reasoning provided suggests that AI tools may provide added value in the future.

Deep learning based motion correction in ultrasound microvessel imaging approach improves thyroid nodule classification.

Saini M, Larson NB, Fatemi M, Alizad A

pubmed logopapersMay 30 2025
To address inter-frame motion artifacts in ultrasound quantitative high-definition microvasculature imaging (qHDMI), we introduced a novel deep learning-based motion correction technique. This approach enables the derivation of more accurate quantitative biomarkers from motion-corrected HDMI images, improving the classification of thyroid nodules. Inter-frame motion, often caused by carotid artery pulsation near the thyroid, can degrade image quality and compromise biomarker reliability, potentially leading to misdiagnosis. Our proposed technique compensates for these motion-induced artifacts, preserving the fine vascular structures critical for accurate biomarker extraction. In this study, we utilized the motion-corrected images obtained through this framework to derive the quantitative biomarkers and evaluated their effectiveness in thyroid nodule classification. We segregated the dataset according to the amount of motion into low and high motion containing cases based on the inter-frame correlation values and performed the thyroid nodule classification for the high motion containing cases and the full dataset. A comprehensive analysis of the biomarker distributions obtained after using the corresponding motion-corrected images demonstrates the significant differences between benign and malignant nodule biomarker characteristics compared to the original motion-containing images. Specifically, the bifurcation angle values derived from the quantitative high-definition microvasculature imaging (qHDMI) become more consistent with the usual trend after motion correction. The classification results demonstrated that sensitivity remained unchanged for groups with less motion, while improved by 9.2% for groups with high motion. These findings highlight that motion correction helps in deriving more accurate biomarkers, which improves the overall classification performance.
Page 85 of 99990 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.