Sort by:
Page 84 of 1341332 results

Towards automated multi-regional lung parcellation for 0.55-3T 3D T2w fetal MRI

Uus, A., Avena Zampieri, C., Downes, F., Egloff Collado, A., Hall, M., Davidson, J., Payette, K., Aviles Verdera, J., Grigorescu, I., Hajnal, J. V., Deprez, M., Aertsen, M., Hutter, J., Rutherford, M., Deprest, J., Story, L.

medrxiv logopreprintJun 26 2025
Fetal MRI is increasingly being employed in the diagnosis of fetal lung anomalies and segmentation-derived total fetal lung volumes are used as one of the parameters for prediction of neonatal outcomes. However, in clinical practice, segmentation is performed manually in 2D motion-corrupted stacks with thick slices which is time consuming and can lead to variations in estimated volumes. Furthermore, there is a known lack of consensus regarding a universal lung parcellation protocol and expected normal total lung volume formulas. The lungs are also segmented as one label without parcellation into lobes. In terms of automation, to the best of our knowledge, there have been no reported works on multi-lobe segmentation for fetal lung MRI. This work introduces the first automated deep learning segmentation pipeline for multi-regional lung segmentation for 3D motion-corrected T2w fetal body images for normal anatomy and congenital diaphragmatic hernia cases. The protocol for parcellation into 5 standard lobes was defined in the population-averaged 3D atlas. It was then used to generate a multi-label training dataset including 104 normal anatomy controls and 45 congenital diaphragmatic hernia cases from 0.55T, 1.5T and 3T acquisition protocols. The performance of 3D Attention UNet network was evaluated on 18 cases and showed good results for normal lung anatomy with expectedly lower Dice values for the ipsilateral lung. In addition, we also produced normal lung volumetry growth charts from 290 0.55T and 3T controls. This is the first step towards automated multi-regional fetal lung analysis for 3D fetal MRI.

AI-based CT assessment of sarcopenia in borderline resectable pancreatic Cancer: A narrative review of clinical and technical perspectives.

Gehin W, Lambert A, Bibault JE

pubmed logopapersJun 25 2025
Sarcopenia, defined as the progressive loss of skeletal muscle mass and function, has been associated with poor prognosis in patients with pancreatic cancer, particularly those with borderline resectable pancreatic cancer (BRPC). Although body composition can be extracted from routine CT imaging, sarcopenia assessment remains underused in clinical practice. Recent advances in artificial intelligence (AI) offer the potential to automate and standardize this process, but their clinical translation remains limited. This narrative review aims to critically evaluate (1) the clinical impact of CT-defined sarcopenia in BRPC, and (2) the performance and maturity of AI-based methods for automated muscle and fat segmentation on CT images. A dual-axis literature search was conducted to identify clinical studies assessing the prognostic role of sarcopenia in BRPC, and technical studies developing AI-based segmentation models for body composition analysis. Structured data extraction was applied to 13 clinical and 71 technical studies. A PRISMA-inspired flow diagram was included to ensure methodological transparency. Sarcopenia was consistently associated with worse survival and treatment tolerance in BRPC, yet clinical definitions and cut-offs varied widely. AI models-mostly 2D U-Nets trained on L3-level CT slices-achieved high segmentation accuracy (mean DSC >0.93), but external validation and standardization were often lacking. CT-based AI assessment of sarcopenia holds promise for improving patient stratification in BRPC. However, its clinical adoption will require standardization, integration into decision-support frameworks, and prospective validation across diverse populations.

Weighted Mean Frequencies: a handcraft Fourier feature for 4D Flow MRI segmentation

Simon Perrin, Sébastien Levilly, Huajun Sun, Harold Mouchère, Jean-Michel Serfaty

arxiv logopreprintJun 25 2025
In recent decades, the use of 4D Flow MRI images has enabled the quantification of velocity fields within a volume of interest and along the cardiac cycle. However, the lack of resolution and the presence of noise in these biomarkers are significant issues. As indicated by recent studies, it appears that biomarkers such as wall shear stress are particularly impacted by the poor resolution of vessel segmentation. The Phase Contrast Magnetic Resonance Angiography (PC-MRA) is the state-of-the-art method to facilitate segmentation. The objective of this work is to introduce a new handcraft feature that provides a novel visualisation of 4D Flow MRI images, which is useful in the segmentation task. This feature, termed Weighted Mean Frequencies (WMF), is capable of revealing the region in three dimensions where a voxel has been passed by pulsatile flow. Indeed, this feature is representative of the hull of all pulsatile velocity voxels. The value of the feature under discussion is illustrated by two experiments. The experiments involved segmenting 4D Flow MRI images using optimal thresholding and deep learning methods. The results obtained demonstrate a substantial enhancement in terms of IoU and Dice, with a respective increase of 0.12 and 0.13 in comparison with the PC-MRA feature, as evidenced by the deep learning task. This feature has the potential to yield valuable insights that could inform future segmentation processes in other vascular regions, such as the heart or the brain.

Accuracy and Efficiency of Artificial Intelligence and Manual Virtual Segmentation for Generation of 3D Printed Tooth Replicas.

Pedrinaci I, Nasseri A, Calatrava J, Couso-Queiruga E, Giannobile WV, Gallucci GO, Sanz M

pubmed logopapersJun 25 2025
The primary aim of this in vitro study was to compare methods for generating 3D-printed replicas through virtual segmentation, utilizing artificial intelligence (AI) or manual processes, by assessing accuracy in terms of volumetric and linear discrepancies. The secondary aims were the assessment of time efficiency with both segmentation methods, and the effect of post-processing on 3D-printed replicas. Thirty teeth were scanned through Cone Beam Computed Tomography (CBCT), capturing the region of interest from human subjects. DICOM files underwent virtual segmentation through both AI and manual methods. Replicas were fabricated with a stereolithography 3D printer. After surface scanning of pre-processed replicas and extracted teeth, STL files were superimposed to compare linear and volumetric differences using the extracted teeth as the reference. Post-processed replicas were scanned to assess the effect of post-processing on linear and volumetric changes. AI-driven segmentation resulted in statistically significant mean linear and volumetric differences of -0.709mm (SD 0.491, P< 0.001) and -4.70%, respectively. Manual segmentation showed no statistically significant differences in mean linear, -0.463mm (SD 0.335, P<0.001) and volumetric (-1.20%) measures. Comparing manual and AI-driven segmentations, AI-driven segmentation displayed mean linear and volumetric differences of -0.329mm (SD 0.566, p=0.003) and -2.23%, respectively. Additionally, AI segmentation reduced the mean time by 21.8 minutes. When comparing post-processed to pre-processed replicas, there was a volumetric reduction of -4.53% and a mean linear difference of -0.151mm (SD 0.564, p=0.042). Both segmentation methods achieved acceptable accuracy, with manual segmentation slightly more accurate but AI-driven segmentation more time-efficient. Continuous improvement in AI offers the potential for increased accuracy, efficiency, and broader application in the future.

Novel Application of Connectomics to the Surgical Management of Pediatric Arteriovenous Malformations.

Syed SA, Al-Mufti F, Hanft SJ, Gandhi CD, Pisapia JM

pubmed logopapersJun 25 2025
Introduction The emergence of connectomics in neurosurgery has allowed for construction of detailed maps of white matter connections, incorporating both structural and functional connectivity patterns. The advantage of mapping cerebral vascular lesions to guide surgical approach shows great potential. We aim to identify the clinical utility of connectomics for the surgical treatment of pediatric arteriovenous malformations (AVM). Case Presentation We present two illustrative cases of the application of connectomics to the management of cerebral AVM in a 9-year-old and 8-year-old female. Using magnetic resonance anatomic and diffusion tensor imaging, a machine learning algorithm generated patient-specific representations of the corticospinal tract for the first patient, and the optic radiations for the second patient. The default mode network and language network were also examined for each patient. The imaging output served as an adjunct to guide operative decision making. It assisted with selection of the superior parietal lobule as the operative corridor for the first case. Furthermore, it alerted the surgeon to white matter tracts in close proximity to the AVM nidus during resection. Finally, it aided in risk versus benefit analysis regarding treatment approach, such as craniotomy for resection for the first patient versus radiosurgery for the second patient. Both patients had favorable neurologic outcomes at the available follow-up period. Conclusion Use of the software integrated well with clinical workflow. The output was used for planning and overlaid on the intraoperative neuro-navigation system. It improved visualization of eloquent regions, especially those networks not visible on standard anatomic imaging. Future studies will focus on expanding the cohort, conducting in pre- and post-operative connectomic analysis with correlation to clinical outcome measures, and incorporating functional magnetic resonance imaging.

[Thyroid nodule segmentation method integrating receiving weighted key-value architecture and spherical geometric features].

Zhu L, Wei G

pubmed logopapersJun 25 2025
To address the high computational complexity of the Transformer in the segmentation of ultrasound thyroid nodules and the loss of image details or omission of key spatial information caused by traditional image sampling techniques when dealing with high-resolution, complex texture or uneven density two-dimensional ultrasound images, this paper proposes a thyroid nodule segmentation method that integrates the receiving weighted key-value (RWKV) architecture and spherical geometry feature (SGF) sampling technology. This method effectively captures the details of adjacent regions through two-dimensional offset prediction and pixel-level sampling position adjustment, achieving precise segmentation. Additionally, this study introduces a patch attention module (PAM) to optimize the decoder feature map using a regional cross-attention mechanism, enabling it to focus more precisely on the high-resolution features of the encoder. Experiments on the thyroid nodule segmentation dataset (TN3K) and the digital database for thyroid images (DDTI) show that the proposed method achieves dice similarity coefficients (DSC) of 87.24% and 80.79% respectively, outperforming existing models while maintaining a lower computational complexity. This approach may provide an efficient solution for the precise segmentation of thyroid nodules.

A New Aortic Valve Calcium Scoring Framework for Automatic Calcification Detection in Echocardiography.

Cakir M, Kablan EB, Ekinci M, Sahin M

pubmed logopapersJun 25 2025
Aortic valve calcium scoring is an essential tool for diagnosing, treating, monitoring, and assessing the risk of aortic stenosis. The current gold standard for determining the aortic valve calcium score is computed tomography (CT). However, CT is costly and exposes patients to ionizing radiation, making it less ideal for frequent monitoring. Echocardiography, a safer and more affordable alternative that avoids radiation, is more widely accessible, but its variability between and within experts leads to subjective interpretations. Given these limitations, there is a clear need for an automated, objective method to measure the aortic valve calcium score from echocardiography, which could reduce costs and improve patient safety. In this paper, we first employ the YOLOv5 method to detect the region of interest in the aorta within echocardiography images. Building on this, we propose a novel approach that combines UNet and diffusion model architectures to segment calcified areas within the identified region, forming the foundation for automated aortic valve calcium scoring. This architecture leverages UNet's localization capabilities and the diffusion model's strengths in capturing fine-grained structures, enhancing both segmentation accuracy and consistency. The proposed method achieves 85.08% precision, 80.01% recall, and 71.13% Dice score on a novel dataset comprising 160 echocardiography images from 86 distinct patients. This system enables cardiologists to focus more on critical aspects of diagnosis by providing a faster, more objective, and cost-effective method for aortic valve calcium scoring and eliminating the risk of radiation exposure.

Computed tomography-derived quantitative imaging biomarkers enable the prediction of disease manifestations and survival in patients with systemic sclerosis.

Sieren MM, Grasshoff H, Riemekasten G, Berkel L, Nensa F, Hosch R, Barkhausen J, Kloeckner R, Wegner F

pubmed logopapersJun 25 2025
Systemic sclerosis (SSc) is a complex inflammatory vasculopathy with diverse symptoms and variable disease progression. Despite its known impact on body composition (BC), clinical decision-making has yet to incorporate these biomarkers. This study aims to extract quantitative BC imaging biomarkers from CT scans to assess disease severity, define BC phenotypes, track changes over time and predict survival. CT exams were extracted from a prospectively maintained cohort of 452 SSc patients. 128 patients with at least one CT exam were included. An artificial intelligence-based 3D body composition analysis (BCA) algorithm assessed muscle volume, different adipose tissue compartments, and bone mineral density. These parameters were analysed with regard to various clinical, laboratory, functional parameters and survival. Phenotypes were identified performing K-means cluster analysis. Longitudinal evaluation of BCA changes employed regression analyses. A regression model using BCA parameters outperformed models based on Body Mass Index and clinical parameters in predicting survival (area under the curve (AUC)=0.75). Longitudinal development of the cardiac marker enabled prediction of survival with an AUC=0.82. Patients with altered BCA parameters had increased ORs for various complications, including interstitial lung disease (p<0.05). Two distinct BCA phenotypes were identified, showing significant differences in gastrointestinal disease manifestations (p<0.01). This study highlights several parameters with the potential to reshape clinical pathways for SSc patients. Quantitative BCA biomarkers offer a means to predict survival and individual disease manifestations, in part outperforming established parameters. These insights open new avenues for research into the mechanisms driving body composition changes in SSc and for developing enhanced disease management tools, ultimately leading to more personalised and effective patient care.

IMC-PINN-FE: A Physics-Informed Neural Network for Patient-Specific Left Ventricular Finite Element Modeling with Image Motion Consistency and Biomechanical Parameter Estimation

Siyu Mu, Wei Xuan Chan, Choon Hwai Yap

arxiv logopreprintJun 25 2025
Elucidating the biomechanical behavior of the myocardium is crucial for understanding cardiac physiology, but cannot be directly inferred from clinical imaging and typically requires finite element (FE) simulations. However, conventional FE methods are computationally expensive and often fail to reproduce observed cardiac motions. We propose IMC-PINN-FE, a physics-informed neural network (PINN) framework that integrates imaged motion consistency (IMC) with FE modeling for patient-specific left ventricular (LV) biomechanics. Cardiac motion is first estimated from MRI or echocardiography using either a pre-trained attention-based network or an unsupervised cyclic-regularized network, followed by extraction of motion modes. IMC-PINN-FE then rapidly estimates myocardial stiffness and active tension by fitting clinical pressure measurements, accelerating computation from hours to seconds compared to traditional inverse FE. Based on these parameters, it performs FE modeling across the cardiac cycle at 75x speedup. Through motion constraints, it matches imaged displacements more accurately, improving average Dice from 0.849 to 0.927, while preserving realistic pressure-volume behavior. IMC-PINN-FE advances previous PINN-FE models by introducing back-computation of material properties and better motion fidelity. Using motion from a single subject to reconstruct shape modes also avoids the need for large datasets and improves patient specificity. IMC-PINN-FE offers a robust and efficient approach for rapid, personalized, and image-consistent cardiac biomechanical modeling.

Aneurysm Analysis Using Deep Learning

Bagheri Rajeoni, A., Pederson, B., Lessner, S. M., Valafar, H.

medrxiv logopreprintJun 25 2025
Precise aneurysm volume measurement offers a transformative edge for risk assessment and treatment planning in clinical settings. Currently, clinical assessments rely heavily on manual review of medical imaging, a process that is time-consuming and prone to inter-observer variability. The widely accepted standard-of-care primarily focuses on measuring aneurysm diameter at its widest point, providing a limited perspective on aneurysm morphology and lacking efficient methods to measure aneurysm volumes. Yet, volume measurement can offer deeper insight into aneurysm progression and severity. In this study, we propose an automated approach that leverages the strengths of pre-trained neural networks and expert systems to delineate aneurysm boundaries and compute volumes on an unannotated dataset from 60 patients. The dataset includes slice-level start/end annotations for aneurysm but no pixel-wise aorta segmentations. Our method utilizes a pre-trained UNet to automatically locate the aorta, employs SAM2 to track the aorta through vascular irregularities such as aneurysms down to the iliac bifurcation, and finally uses a Long Short-Term Memory (LSTM) network or expert system to identify the beginning and end points of the aneurysm within the aorta. Despite no manual aorta segmentation, our approach achieves promising accuracy, predicting the aneurysm start point with an R2 score of 71%, the end point with an R2 score of 76%, and the volume with an R2 score of 92%. This technique has the potential to facilitate large-scale aneurysm analysis and improve clinical decision-making by reducing dependence on annotated datasets.
Page 84 of 1341332 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.