Sort by:
Page 8 of 73727 results

Function of <sup>18</sup>F-FDG PET/CT radiomics in the detection of checkpoint inhibitor-induced liver injury (CHILI).

Huigen CMC, Coukos A, Latifyan S, Nicod Lalonde M, Schaefer N, Abler D, Depeursinge A, Prior JO, Fraga M, Jreige M

pubmed logopapersAug 4 2025
In the last decade, immunotherapy, particularly immune checkpoint inhibitors, has revolutionized cancer treatment and improved prognosis. However, severe checkpoint inhibitor-induced liver injury (CHILI), which can lead to treatment discontinuation or death, occurs in up to 18% of the patients. The aim of this study is to evaluate the value of PET/CT radiomics analysis for the detection of CHILI. Patients with CHILI grade 2 or higher who underwent liver function tests and liver biopsy were retrospectively included. Minors, patients with cognitive impairments, and patients with viral infections were excluded from the study. The patients' liver and spleen were contoured on the anonymized PET/CT imaging data, followed by radiomics feature extraction. Principal component analysis (PCA) and Bonferroni corrections were used for statistical analysis and exploration of radiomics features related to CHILI. Sixteen patients were included and 110 radiomics features were extracted from PET images. Liver PCA-5 showed significance as well as one associated feature but did not remain significant after Bonferroni correction. Spleen PCA-5 differed significantly between CHILI and non-CHILI patients even after Bonferroni correction, possibly linked to the higher metabolic function of the spleen in autoimmune diseases due to the recruitment of immune cells. This pilot study identified statistically significant differences in PET-derived radiomics features of the spleen and observable changes in the liver on PET/CT scans before and after the onset of CHILI. Identifying these features could aid in diagnosing or predicting CHILI, potentially enabling personalized treatment. Larger multicenter prospective studies are needed to confirm these findings and develop automated detection methods.

Early prediction of proton therapy dose distributions and DVHs for hepatocellular carcinoma using contour-based CNN models from diagnostic CT and MRI.

Rachi T, Tochinai T

pubmed logopapersAug 4 2025
Proton therapy is commonly used for treating hepatocellular carcinoma (HCC); however, its feasibility can be challenging to assess in large tumors or those adjacent to critical organs at risk (OARs), which are typically assessed only after planning computed tomography (CT) acquisition. This study aimed to predict proton dose distributions using diagnostic CT (dCT) and diagnostic MRI (dMRI) with a convolutional neural network (CNN), enabling early treatment feasibility assessments. Dose distributions and dose-volume histograms (DVHs) were calculated for 118 patients with HCC using intensity-modulated proton therapy (IMPT) and passive proton therapy. A CPU-based CNN model was used to predict DVHs and 3D dose distributions from diagnostic images. Prediction accuracy was evaluated using mean absolute error (MAE), mean squared error (MSE), peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and gamma passing rate with a 3 mm/3% criterion. The predicted DVHs and dose distributions showed high agreement with actual values. MAE remained below 3.0%, with passive techniques achieving 1.2-1.8%. MSE was below 0.004 in all cases. PSNR ranged from 24 to 28 dB, and SSIM exceeded 0.94 in most conditions. Gamma passing rates averaged 82-83% for IMPT and 92-93% for passive techniques. The model achieved comparable accuracy when using dMRI and dCT. This study demonstrates that early dose distribution prediction from diagnostic imaging is feasible and accurate using a lightweight CNN model. Despite anatomical variability between diagnostic and planning images, this approach provides timely insights into treatment feasibility, potentially supporting insurance pre-authorization, reducing unnecessary imaging, and optimizing clinical workflows for HCC proton therapy.

Scaling Artificial Intelligence for Prostate Cancer Detection on MRI towards Population-Based Screening and Primary Diagnosis in a Global, Multiethnic Population (Study Protocol)

Anindo Saha, Joeran S. Bosma, Jasper J. Twilt, Alexander B. C. D. Ng, Aqua Asif, Kirti Magudia, Peder Larson, Qinglin Xie, Xiaodong Zhang, Chi Pham Minh, Samuel N. Gitau, Ivo G. Schoots, Martijn F. Boomsma, Renato Cuocolo, Nikolaos Papanikolaou, Daniele Regge, Derya Yakar, Mattijs Elschot, Jeroen Veltman, Baris Turkbey, Nancy A. Obuchowski, Jurgen J. Fütterer, Anwar R. Padhani, Hashim U. Ahmed, Tobias Nordström, Martin Eklund, Veeru Kasivisvanathan, Maarten de Rooij, Henkjan Huisman

arxiv logopreprintAug 4 2025
In this intercontinental, confirmatory study, we include a retrospective cohort of 22,481 MRI examinations (21,288 patients; 46 cities in 22 countries) to train and externally validate the PI-CAI-2B model, i.e., an efficient, next-generation iteration of the state-of-the-art AI system that was developed for detecting Gleason grade group $\geq$2 prostate cancer on MRI during the PI-CAI study. Of these examinations, 20,471 cases (19,278 patients; 26 cities in 14 countries) from two EU Horizon projects (ProCAncer-I, COMFORT) and 12 independent centers based in Europe, North America, Asia and Africa, are used for training and internal testing. Additionally, 2010 cases (2010 patients; 20 external cities in 12 countries) from population-based screening (STHLM3-MRI, IP1-PROSTAGRAM trials) and primary diagnostic settings (PRIME trial) based in Europe, North and South Americas, Asia and Australia, are used for external testing. Primary endpoint is the proportion of AI-based assessments in agreement with the standard of care diagnoses (i.e., clinical assessments made by expert uropathologists on histopathology, if available, or at least two expert urogenital radiologists in consensus; with access to patient history and peer consultation) in the detection of Gleason grade group $\geq$2 prostate cancer within the external testing cohorts. Our statistical analysis plan is prespecified with a hypothesis of diagnostic interchangeability to the standard of care at the PI-RADS $\geq$3 (primary diagnosis) or $\geq$4 (screening) cut-off, considering an absolute margin of 0.05 and reader estimates derived from the PI-CAI observer study (62 radiologists reading 400 cases). Secondary measures comprise the area under the receiver operating characteristic curve (AUROC) of the AI system stratified by imaging quality, patient age and patient ethnicity to identify underlying biases (if any).

Artificial intelligence: a new era in prostate cancer diagnosis and treatment.

Vidiyala N, Parupathi P, Sunkishala P, Sree C, Gujja A, Kanagala P, Meduri SK, Nyavanandi D

pubmed logopapersAug 4 2025
Prostate cancer (PCa) represents one of the most prevalent cancers among men, with substantial challenges in timely and accurate diagnosis and subsequent treatment. Traditional diagnosis and treatment methods for PCa, such as prostate-specific antigen (PSA) biomarker detection, digital rectal examination, imaging (CT/MRI) analysis, and biopsy histopathological examination, suffer from limitations such as a lack of specificity, generation of false positives or negatives, and difficulty in handling large data, leading to overdiagnosis and overtreatment. The integration of artificial intelligence (AI) in PCa diagnosis and treatment is revolutionizing traditional approaches by offering advanced tools for early detection, personalized treatment planning, and patient management. AI technologies, especially machine learning and deep learning, improve diagnostic accuracy and treatment planning. The AI algorithms analyze imaging data, like MRI and ultrasound, to identify cancerous lesions effectively with great precision. In addition, AI algorithms enhance risk assessment and prognosis by combining clinical, genomic, and imaging data. This leads to more tailored treatment strategies, enabling informed decisions about active surveillance, surgery, or new therapies, thereby improving quality of life while reducing unnecessary diagnoses and treatments. This review examines current AI applications in PCa care, focusing on their transformative impact on diagnosis and treatment planning while recognizing potential challenges. It also outlines expected improvements in diagnosis through AI-integrated systems and decision support tools for healthcare teams. The findings highlight AI's potential to enhance clinical outcomes, operational efficiency, and patient-centred care in managing PCa.

A dual self-attentive transformer U-Net model for precise pancreatic segmentation and fat fraction estimation.

Shanmugam A, Radhabai PR, Kvn K, Imoize AL

pubmed logopapersAug 4 2025
Accurately segmenting the pancreas from abdominal computed tomography (CT) images is crucial for detecting and managing pancreatic diseases, such as diabetes and tumors. Type 2 diabetes and metabolic syndrome are associated with pancreatic fat accumulation. Calculating the fat fraction aids in the investigation of β-cell malfunction and insulin resistance. The most widely used pancreas segmentation technique is a U-shaped network based on deep convolutional neural networks (DCNNs). They struggle to capture long-range biases in an image because they rely on local receptive fields. This research proposes a novel dual Self-attentive Transformer Unet (DSTUnet) model for accurate pancreatic segmentation, addressing this problem. This model incorporates dual self-attention Swin transformers on both the encoder and decoder sides to facilitate global context extraction and refine candidate regions. After segmenting the pancreas using a DSTUnet, a histogram analysis is used to estimate the fat fraction. The suggested method demonstrated excellent performance on the standard dataset, achieving a DSC of 93.7% and an HD of 2.7 mm. The average volume of the pancreas was 92.42, and its fat volume fraction (FVF) was 13.37%.

Natural language processing evaluation of trends in cervical cancer incidence in radiology reports: A ten-year survey.

López-Úbeda P, Martín-Noguerol T, Luna A

pubmed logopapersAug 4 2025
Cervical cancer commonly associated with human papillomavirus (HPV) infection, remains the fourth most common cancer in women globally. This study aims to develop and evaluate a Natural Language Processing (NLP) system to identify and analyze cervical cancer incidence trends from 2013 to 2023 at our institution, focusing on age-specific variations and evaluating the possible impact of HPV vaccination. This retrospective cohort study, we analyzed unstructured radiology reports collected between 2013 and 2023, comprising 433,207 studies involving 250,181 women who underwent CT, MRI, or ultrasound scans of the abdominopelvic region. A rule-based NLP system was developed to extract references to cervical cancer from these reports and validated against a set of 200 manually annotated cases reviewed by an experienced radiologist. The NLP system demonstrated excellent performance, achieving an accuracy of over 99.5 %. This high reliability enabled its application in a large-scale population study. Results show that the women under 30 maintain a consistently low cervical cancer incidence, likely reflecting early HPV vaccination impact. The 30-40 cohorts declined until 2020, followed by a slight increase, while the 40-60 groups exhibited an overall downward trend with fluctuations, suggesting long-term vaccine effects. Incidence in patients over 60 also declined, though with greater variability, possibly due to other risk factors. The developed NLP system effectively identified cervical cancer cases from unstructured radiology reports, facilitating an accurate analysis of the impact of HPV vaccination on cervical cancer prevalence and imaging study requirements. This approach demonstrates the potential of AI and NLP tools in enhancing data accuracy and efficiency in medical epidemiology research. NLP-based approaches can significantly improve the collection and analysis of epidemiological data on cervical cancer, supporting the development of more targeted and personalized prevention strategies-particularly in populations with heterogeneous HPV vaccination coverage.

Less is More: AMBER-AFNO -- a New Benchmark for Lightweight 3D Medical Image Segmentation

Andrea Dosi, Semanto Mondal, Rajib Chandra Ghosh, Massimo Brescia, Giuseppe Longo

arxiv logopreprintAug 3 2025
This work presents the results of a methodological transfer from remote sensing to healthcare, adapting AMBER -- a transformer-based model originally designed for multiband images, such as hyperspectral data -- to the task of 3D medical datacube segmentation. In this study, we use the AMBER architecture with Adaptive Fourier Neural Operators (AFNO) in place of the multi-head self-attention mechanism. While existing models rely on various forms of attention to capture global context, AMBER-AFNO achieves this through frequency-domain mixing, enabling a drastic reduction in model complexity. This design reduces the number of trainable parameters by over 80% compared to UNETR++, while maintaining a FLOPs count comparable to other state-of-the-art architectures. Model performance is evaluated on two benchmark 3D medical datasets -- ACDC and Synapse -- using standard metrics such as Dice Similarity Coefficient (DSC) and Hausdorff Distance (HD), demonstrating that AMBER-AFNO achieves competitive or superior accuracy with significant gains in training efficiency, inference speed, and memory usage.

External evaluation of an open-source deep learning model for prostate cancer detection on bi-parametric MRI.

Johnson PM, Tong A, Ginocchio L, Del Hoyo JL, Smereka P, Harmon SA, Turkbey B, Chandarana H

pubmed logopapersAug 3 2025
This study aims to evaluate the diagnostic accuracy of an open-source deep learning (DL) model for detecting clinically significant prostate cancer (csPCa) in biparametric MRI (bpMRI). It also aims to outline the necessary components of the model that facilitate effective sharing and external evaluation of PCa detection models. This retrospective diagnostic accuracy study evaluated a publicly available DL model trained to detect PCa on bpMRI. External validation was performed on bpMRI exams from 151 biologically male patients (mean age, 65 ± 8 years). The model's performance was evaluated using patient-level classification of PCa with both radiologist interpretation and histopathology serving as the ground truth. The model processed bpMRI inputs to generate lesion probability maps. Performance was assessed using the area under the receiver operating characteristic curve (AUC) for PI-RADS ≥ 3, PI-RADS ≥ 4, and csPCa (defined as Gleason ≥ 7) at an exam level. The model achieved AUCs of 0.86 (95% CI: 0.80-0.92) and 0.91 (95% CI: 0.85-0.96) for predicting PI-RADS ≥ 3 and ≥ 4 exams, respectively, and 0.78 (95% CI: 0.71-0.86) for csPCa. Sensitivity and specificity for csPCa were 0.87 and 0.53, respectively. Fleiss' kappa for inter-reader agreement was 0.51. The open-source DL model offers high sensitivity to clinically significant prostate cancer. The study underscores the importance of sharing model code and weights to enable effective external validation and further research. Question Inter-reader variability hinders the consistent and accurate detection of clinically significant prostate cancer in MRI. Findings An open-source deep learning model demonstrated reproducible diagnostic accuracy, achieving AUCs of 0.86 for PI-RADS ≥ 3 and 0.78 for CsPCa lesions. Clinical relevance The model's high sensitivity for MRI-positive lesions (PI-RADS ≥ 3) may provide support for radiologists. Its open-source deployment facilitates further development and evaluation across diverse clinical settings, maximizing its potential utility.

Advances in renal cancer: diagnosis, treatment, and emerging technologies.

Saida T, Iima M, Ito R, Ueda D, Nishioka K, Kurokawa R, Kawamura M, Hirata K, Honda M, Takumi K, Ide S, Sugawara S, Watabe T, Sakata A, Yanagawa M, Sofue K, Oda S, Naganawa S

pubmed logopapersAug 2 2025
This review provides a comprehensive overview of current practices and recent advancements in the diagnosis and treatment of renal cancer. It introduces updates in histological classification and explains the imaging characteristics of each tumour based on these changes. The review highlights state-of-the-art imaging modalities, including magnetic resonance imaging, computed tomography, positron emission tomography, and ultrasound, emphasising their crucial role in tumour characterisation and optimising treatment planning. Emerging technologies, such as radiomics and artificial intelligence, are also discussed for their transformative impact on enhancing diagnostic precision, prognostic prediction, and personalised patient management. Furthermore, the review explores current treatment options, including minimally invasive techniques such as cryoablation, radiofrequency ablation, and stereotactic body radiation therapy, as well as systemic therapies such as immune checkpoint inhibitors and targeted therapies.

The dosimetric impacts of ct-based deep learning autocontouring algorithm for prostate cancer radiotherapy planning dosimetric accuracy of DirectORGANS.

Dinç SÇ, Üçgül AN, Bora H, Şentürk E

pubmed logopapersAug 2 2025
In study, we aimed to dosimetrically evaluate the usability of a new generation autocontouring algorithm (DirectORGANS) that automatically identifies organs and contours them directly in the computed tomography (CT) simulator before creating prostate radiotherapy plans. The CT images of 10 patients were used in this study. The prostates, bladder, rectum, and femoral heads of 10 patients were automatically contoured based on DirectORGANS algorithm at the CT simulator. On the same CT image sets, the same target volumes and contours of organs at risk were manually contoured by an experienced physician using MRI images and used as a reference structure. The doses of manually delineated contours of the target volume and organs at risk and the doses of auto contours of the target volume and organs at risk were obtained from the dose volume histogram of the same plan. Conformity index (CI) and homogeneity index (HI) were calculated to evaluate the target volumes. In critical organ structures, V<sub>60,</sub> V<sub>65,</sub> V<sub>70</sub> for the rectum, V<sub>65,</sub> V70, V75, and V<sub>80</sub> for the bladder, and maximum doses for femoral heads were evaluated. The Mann-Whitney U test was used for statistical comparison with statistical package SPSS (P < 0.05). Compared to the doses of the manual contours (MC) with auto contours (AC), there was no significant difference between the doses of the organs at risk. However, there were statistically significant differences between HI and CI values due to differences in prostate contouring (P < 0.05). The study showed that the need for clinicians to edit target volumes using MRI before treatment planning. However, it demonstrated that delineating organs at risk was used safely without the need for correction. DirectORGANS algorithm is suitable for use in RT planning to minimize differences between physicians and shorten the duration of this contouring step.
Page 8 of 73727 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.