Sort by:
Page 76 of 100991 results

Radiomics and deep learning characterisation of liver malignancies in CT images - A systematic review.

Yahaya BS, Osman ND, Karim NKA, Appalanaido GK, Isa IS

pubmed logopapersJun 3 2025
Computed tomography (CT) has been widely used as an effective tool for liver imaging due to its high spatial resolution, and ability to differentiate tissue densities, which contributing to comprehensive image analysis. Recent advancements in artificial intelligence (AI) promoted the role of Machine Learning (ML) in managing liver cancers by predicting or classifying tumours using mathematical algorithms. Deep learning (DL), a subset of ML, expanded these capabilities through convolutional neural networks (CNN) that analyse large data automatically. This review examines methods, achievements, limitations, and performance outcomes of ML-based radiomics and DL models for liver malignancies from CT imaging. A systematic search for full-text articles in English on CT radiomics and DL in liver cancer analysis was conducted in PubMed, Scopus, Science Citation Index, and Cochrane Library databases between 2020 and 2024 using the keywords; machine learning, radiomics, deep learning, computed tomography, liver cancer and associated MESH terms. PRISMA guidelines were used to identify and screen studies for inclusion. A total of 49 studies were included consisting of 17 Radiomics, 24 DL, and 8 combined DL/Radiomics studies. Radiomics has been predominantly utilised for predictive analysis, while DL has been extensively applied to automatic liver and tumour segmentation with a surge of a recent increase in studies integrating both techniques. Despite the growing popularity of DL methods, classical radiomics models are still relevant and often preferred over DL methods when performance is similar, due to lower computational and data needs. Performance of models keep improving, but challenges like data scarcity and lack of standardised protocols persists.

Patient-specific prostate segmentation in kilovoltage images for radiation therapy intrafraction monitoring via deep learning.

Mylonas A, Li Z, Mueller M, Booth JT, Brown R, Gardner M, Kneebone A, Eade T, Keall PJ, Nguyen DT

pubmed logopapersJun 3 2025
During radiation therapy, the natural movement of organs can lead to underdosing the cancer and overdosing the healthy tissue, compromising treatment efficacy. Real-time image-guided adaptive radiation therapy can track the tumour and account for the motion. Typically, fiducial markers are implanted as a surrogate for the tumour position due to the low radiographic contrast of soft tissues in kilovoltage (kV) images. A segmentation approach that does not require markers would eliminate the costs, delays, and risks associated with marker implantation. We trained patient-specific conditional Generative Adversarial Networks for prostate segmentation in kV images. The networks were trained using synthetic kV images generated from each patient's own imaging and planning data, which are available prior to the commencement of treatment. We validated the networks on two treatment fractions from 30 patients using multi-centre data from two clinical trials. Here, we present a large-scale proof-of-principle study of x-ray-based markerless prostate segmentation for globally available cancer therapy systems. Our results demonstrate the feasibility of a deep learning approach using kV images to track prostate motion across the entire treatment arc for 30 patients with prostate cancer. The mean absolute deviation is 1.4 and 1.6 mm in the anterior-posterior/lateral and superior-inferior directions, respectively. Markerless segmentation via deep learning may enable real-time image guidance on conventional cancer therapy systems without requiring implanted markers or additional hardware, thereby expanding access to real-time adaptive radiation therapy.

Deep Learning-Based Opportunistic CT Osteoporosis Screening and Establishment of Normative Values

Westerhoff, M., Gyftopoulos, S., Dane, B., Vega, E., Murdock, D., Lindow, N., Herter, F., Bousabarah, K., Recht, M. P., Bredella, M. A.

medrxiv logopreprintJun 3 2025
BackgroundOsteoporosis is underdiagnosed and undertreated prompting the exploration of opportunistic screening using CT and artificial intelligence (AI). PurposeTo develop a reproducible deep learning-based convolutional neural network to automatically place a 3D region of interest (ROI) in trabecular bone, develop a correction method to normalize attenuation across different CT protocols or and scanner models, and to establish thresholds for osteoporosis in a large diverse population. MethodsA deep learning-based method was developed to automatically quantify trabecular attenuation using a 3D ROI of the thoracic and lumbar spine on chest, abdomen, or spine CTs, adjusted for different tube voltages and scanner models. Normative values, thresholds for osteoporosis of trabecular attenuation of the spine were established across a diverse population, stratified by age, sex, race, and ethnicity using reported prevalence of osteoporosis by the WHO. Results538,946 CT examinations from 283,499 patients (mean age 65 years{+/-}15, 51.2% women and 55.5% White), performed on 50 scanner models using six different tube voltages were analyzed. Hounsfield Units at 80 kVp versus 120 kVp differed by 23%, and different scanner models resulted in differences of values by < 10%. Automated ROI placement of 1496 vertebra was validated by manual radiologist review, demonstrating >99% agreement. Mean trabecular attenuation was higher in young women (<50 years) than young men (p<.001) and decreased with age, with a steeper decline in postmenopausal women. In patients older than 50 years, trabecular attention was higher in males than females (p<.001). Trabecular attenuation was highest in Blacks, followed by Asians and lowest in Whites (p<.001). The threshold for L1 in diagnosing osteoporosis was 80 HU. ConclusionDeep learning-based automated opportunistic osteoporosis screening can identify patients with low bone mineral density that undergo CT scans for clinical purposes on different scanners and protocols. Key Results 3 main results/conclusionsO_LIIn a study of 538,946 CT examinations performed in 283,499 patients using different scanner models and imaging protocols, an automated deep learning-based convolutional neural network was able to accurately place a three-dimensional regions of interest within thoracic and lumbar vertebra to measure trabecular attenuation. C_LIO_LITube voltage had a larger influence on attenuation values (23%) than scanner model (<10%). C_LIO_LIA threshold of 80 HU was identified for L1 to diagnose osteoporosis using an automated three-dimensional region of interest. C_LI

Developing a CT radiomics-based model for assessing split renal function using machine learning.

Zhan Y, Zheng J, Chen X, Chen Y, Fang C, Lai C, Dai M, Wu Z, Wu H, Yu T, Huang J, Yu H

pubmed logopapersJun 3 2025
This study aims to investigate whether non-contrast computed tomography radiomics can effectively reflect split renal function and to develop a radiomics model for its assessment. This retrospective study included kidneys from the study center and split them into training (70%) and testing (30%) sets. Renal dynamic imaging was used as the reference standard for measuring split renal function. Based on chronic kidney disease staging, kidneys were categorized into three groups according to glomerular filtration rate: > 45 ml/min/1.73 m<sup>2</sup>, 30-45 ml/min/1.73 m<sup>2</sup>, and < 30 ml/min/1.73 m<sup>2</sup>.Features were selected based on feature importance ranking from a tree model, and a random forest radiomics model was built. A total of 543 kidneys were included, with 381 in the training set and 162 in the testing set. In the training set, 16 features identified as most important for distinguishing between the groups were ultimately included to develop the random forest model. The model demonstrated good discriminatory ability in the testing set. The AUC for the > 45 ml/min/1.73 m<sup>2</sup>, 30-45 ml/min/1.73 m<sup>2</sup>, and < 30 ml/min/1.73 m<sup>2</sup> categories were 0.859 (95% CI 0.804-0.910), 0.679 (95% CI 0.589-0.760), and 0.901 (95% CI 0.848-0.946), respectively. The calibration curves for the kidneys in each group closely align with the diagonal, with Hosmer-Lemeshow test P-values of 0.124, 0.241, and 0.199 for the three groups, respectively (all P > 0.05). The decision curve analysis confirmed the radiomics model's clinical utility, demonstrating significantly higher net benefit than both treat-all and treat-none strategies at clinically relevant probability thresholds: 1-69% and 71-75% for the > 45 ml/min/1.73 m<sup>2</sup> group, 15-d50% for the 30-45 ml/min/1.73 m<sup>2</sup> group, and 0-99% for the < 30 ml/min/1.73 m<sup>2</sup> group. Non-contrast computed tomography radiomics can effectively reflect split renal function information, and the model developed based on it can accurately assess split renal function, holding great potential for clinical application.

A Deep Learning-Based Artificial Intelligence Model Assisting Thyroid Nodule Diagnosis and Management: Pilot Results for Evaluating Thyroid Malignancy in Pediatric Cohorts.

Ha EJ, Lee JH, Mak N, Duh AK, Tong E, Yeom KW, Meister KD

pubmed logopapersJun 2 2025
<b><i>Purpose:</i></b> Artificial intelligence (AI) models have shown promise in predicting malignant thyroid nodules in adults; however, research on deep learning (DL) for pediatric cases is limited. We evaluated the applicability of a DL-based model for assessing thyroid nodules in children. <b><i>Methods:</i></b> We retrospectively identified two pediatric cohorts (<i>n</i> = 128; mean age 15.5 ± 2.4 years; 103 girls) who had thyroid nodule ultrasonography (US) with histological confirmation at two institutions. The AI-Thyroid DL model, originally trained on adult data, was tested on pediatric nodules in three scenarios axial US images, longitudinal US images, and both. We conducted a subgroup analysis based on the two pediatric cohorts and age groups (≥14 years vs. < 14 years) and compared the model's performance with radiologist interpretations using the Thyroid Imaging Reporting and Data System (TIRADS). <b><i>Results:</i></b> Out of 156 nodules analyzed, 47 (30.1%) were malignant. AI-Thyroid demonstrated respective area under the receiver operating characteristic (AUROC), sensitivity, and specificity values of 0.913-0.929, 78.7-89.4%, and 79.8-91.7%, respectively. The AUROC values did not significantly differ across the image planes (all <i>p</i> > 0.05) and between the two pediatric cohorts (<i>p</i> = 0.804). No significant differences were observed between age groups in terms of sensitivity and specificity (all <i>p</i> > 0.05) while the AUROC values were higher for patients aged <14 years compared to those aged ≥14 years (all <i>p</i> < 0.01). AI-Thyroid yielded the highest AUROC values, followed by ACR-TIRADS and K-TIRADS (<i>p</i> = 0.016 and <i>p</i> < 0.001, respectively). <b><i>Conclusion:</i></b> AI-Thyroid demonstrated high performance in diagnosing pediatric thyroid cancer. Future research should focus on optimizing AI-Thyroid for pediatric use and exploring its role alongside tissue sampling in clinical practice.

Harnessing Artificial Intelligence to Predict Spontaneous Stone Passage: Development and Testing of a Machine Learning-Based Calculator.

Gupta K, Ricapito A, Lundon D, Khargi R, Connors C, Yaghoubian AJ, Gallante B, Atallah WM, Gupta M

pubmed logopapersJun 2 2025
<b><i>Objective:</i></b> We sought to use artificial intelligence (AI) to develop and test calculators to predict spontaneous stone passage (SSP) using radiographical and clinical data. <b><i>Methods:</i></b> Consecutive patients with solitary ureteral stones ≤10 mm on CT were prospectively enrolled and managed according to American Urological Association guidelines. The first 70% of patients were placed in the "training group" and used to develop the calculators. The latter 30% were enrolled in the "testing group" to externally validate the calculators. Exclusion criteria included contraindication to trial of SSP, ureteral stent, and anatomical anomaly. Demographic, clinical, and radiographical data were obtained and fed into machine learning (ML) platforms. SSP was defined as passage of stone without intervention. Calculators were derived from data using multivariate logistic regression. Discrimination, calibration, and clinical utility/net benefit of the developed models were assessed in the validation cohort. Receiver operating characteristic curves were constructed to measure their discriminative ability. <b><i>Results:</i></b> Fifty-one percent of 131 "training" patients spontaneously passed their stones. Passed stones were significantly closer to the bladder (8.6 <i>vs</i> 11.8 cm, p = 0.01) and smaller in length, width, and height. Two ML calculators were developed, one supervised machine learning (SML) and the other unsupervised machine learning (USML), and compared to an existing tool Multi-centre Cohort Study Evaluating the role of Inflammatory Markers In Patients Presenting with Acute Ureteric Colic (MIMIC). The SML calculator included maximum stone width (MSW), ureteral diameter above the stone (UDA), and distance from ureterovesical junction to bottom of stone and had an area under the curve (AUC) of 0.737 upon external validation of 58 "test" patients. Parameters selected by USML included MSW, UDA, and use of an anticholinergic, and it had an AUC of 0.706. The MIMIC calculator's AUC was 0.588 (0.489-0.686). <b><i>Conclusion:</i></b> We used AI to develop calculators that outperformed an existing tool and can help providers and patients make a better-informed decision for the treatment of ureteral stones.

Medical World Model: Generative Simulation of Tumor Evolution for Treatment Planning

Yijun Yang, Zhao-Yang Wang, Qiuping Liu, Shuwen Sun, Kang Wang, Rama Chellappa, Zongwei Zhou, Alan Yuille, Lei Zhu, Yu-Dong Zhang, Jieneng Chen

arxiv logopreprintJun 2 2025
Providing effective treatment and making informed clinical decisions are essential goals of modern medicine and clinical care. We are interested in simulating disease dynamics for clinical decision-making, leveraging recent advances in large generative models. To this end, we introduce the Medical World Model (MeWM), the first world model in medicine that visually predicts future disease states based on clinical decisions. MeWM comprises (i) vision-language models to serve as policy models, and (ii) tumor generative models as dynamics models. The policy model generates action plans, such as clinical treatments, while the dynamics model simulates tumor progression or regression under given treatment conditions. Building on this, we propose the inverse dynamics model that applies survival analysis to the simulated post-treatment tumor, enabling the evaluation of treatment efficacy and the selection of the optimal clinical action plan. As a result, the proposed MeWM simulates disease dynamics by synthesizing post-treatment tumors, with state-of-the-art specificity in Turing tests evaluated by radiologists. Simultaneously, its inverse dynamics model outperforms medical-specialized GPTs in optimizing individualized treatment protocols across all metrics. Notably, MeWM improves clinical decision-making for interventional physicians, boosting F1-score in selecting the optimal TACE protocol by 13%, paving the way for future integration of medical world models as the second readers.

Exploring <i>SLC25A42</i> as a Radiogenomic Marker from the Perioperative Stage to Chemotherapy in Hepatitis-Related Hepatocellular Carcinoma.

Dou L, Jiang J, Yao H, Zhang B, Wang X

pubmed logopapersJun 2 2025
<b><i>Background:</i></b> The molecular mechanisms driving hepatocellular carcinoma (HCC) and predict the chemotherapy sensitive remain unclear; therefore, identification of these key biomarkers is essential for early diagnosis and treatment of HCC. <b><i>Method:</i></b> We collected and processed Computed Tomography (CT) and clinical data from 116 patients with autoimmune hepatitis (AIH) and HCC who came to our hospital's Liver Cancer Center. We then identified and extracted important characteristic features of significant patient images and correlated them with mitochondria-related genes using machine learning techniques such as multihead attention networks, lasso regression, principal component analysis (PCA), and support vector machines (SVM). These genes were integrated into radiomics signature models to explore their role in disease progression. We further correlated these results with clinical variables to screen for driver genes and evaluate the predict ability of chemotherapy sensitive of key genes in liver cancer (LC) patients. Finally, qPCR was used to validate the expression of this gene in patient samples. <b><i>Results:</i></b> Our study utilized attention networks to identify disease regions in medical images with 97% accuracy and an AUC of 94%. We extracted 942 imaging features, identifying five key features through lasso regression that accurately differentiate AIH from HCC. Transcriptome analysis revealed 132 upregulated and 101 downregulated genes in AIH, with 45 significant genes identified by XGBOOST. In HCC analysis, PCA and random forest highlighted 11 key features. Among mitochondrial genes, <i>SLC25A42</i> correlated positively with normal tissue imaging features but negatively with cancerous tissues and was identified as a driver gene. Low expression of <i>SLC25A42</i> was associated with chemotherapy sensitive in HCC patients. <b><i>Conclusions:</i></b> In conclusion, machine learning modeling combined with genomic profiling provides a promising approach to identify the driver gene <i>SLC25A42</i> in LC, which may help improve diagnostic accuracy and chemotherapy sensitivity for this disease.

Multicycle Dosimetric Behavior and Dose-Effect Relationships in [<sup>177</sup>Lu]Lu-DOTATATE Peptide Receptor Radionuclide Therapy.

Kayal G, Roseland ME, Wang C, Fitzpatrick K, Mirando D, Suresh K, Wong KK, Dewaraja YK

pubmed logopapersJun 2 2025
We investigated pharmacokinetics, dosimetric patterns, and absorbed dose (AD)-effect correlations in [<sup>177</sup>Lu]Lu-DOTATATE peptide receptor radionuclide therapy (PRRT) for metastatic neuroendocrine tumors (NETs) to develop strategies for future personalized dosimetry-guided treatments. <b>Methods:</b> Patients treated with standard [<sup>177</sup>Lu]Lu-DOTATATE PRRT were recruited for serial SPECT/CT imaging. Kidneys were segmented on CT using a deep learning algorithm, and tumors were segmented at each cycle using a SPECT gradient-based tool, guided by radiologist-defined contours on baseline CT/MRI. Dosimetry was performed using an automated workflow that included contour intensity-based SPECT-SPECT registration, generation of Monte Carlo dose-rate maps, and dose-rate fitting. Lesion-level response at first follow-up was evaluated using both radiologic (RECIST and modified RECIST) and [<sup>68</sup>Ga]Ga-DOTATATE PET-based criteria. Kidney toxicity was evaluated based on the estimated glomerular filtration rate (eGFR) at 9 mo after PRRT. <b>Results:</b> Dosimetry was performed after cycle 1 in 30 patients and after all cycles in 22 of 30 patients who completed SPECT/CT imaging after each cycle. Median cumulative tumor (<i>n</i> = 78) AD was 2.2 Gy/GBq (range, 0.1-20.8 Gy/GBq), whereas median kidney AD was 0.44 Gy/GBq (range, 0.25-0.96 Gy/GBq). The tumor-to-kidney AD ratio decreased with each cycle (median, 6.4, 5.7, 4.7, and 3.9 for cycles 1-4) because of a decrease in tumor AD, while kidney AD remained relatively constant. Higher-grade (grade 2) and pancreatic NETs showed a significantly larger drop in AD with each cycle, as well as significantly lower AD and effective half-life (T<sub>eff</sub>), than did low-grade (grade 1) and small intestinal NETs, respectively. T<sub>eff</sub> remained relatively constant with each cycle for both tumors and kidneys. Kidney T<sub>eff</sub> and AD were significantly higher in patients with low eGFR than in those with high eGFR. Tumor AD was not significantly associated with response measures. There was no nephrotoxicity higher than grade 2; however, a significant negative association was found in univariate analyses between eGFR at 9 mo and AD to the kidney, which improved in a multivariable model that also adjusted for baseline eGFR (cycle 1 AD, <i>P</i> = 0.020, adjusted <i>R</i> <sup>2</sup> = 0.57; cumulative AD, <i>P</i> = 0.049, adjusted <i>R</i> <sup>2</sup> = 0.65). The association between percentage change in eGFR and AD to the kidney was also significant in univariate analysis and after adjusting for baseline eGFR (cycle 1 AD, <i>P</i> = 0.006, adjusted <i>R</i> <sup>2</sup> = 0.21; cumulative AD, <i>P</i> = 0.019, adjusted <i>R</i> <sup>2</sup> = 0.21). <b>Conclusion:</b> The dosimetric behavior we report over different cycles and for different NET subgroups can be considered when optimizing PRRT to individual patients. The models we present for the relationship between eGFR and AD have potential for clinical use in predicting renal function early in the treatment course. Furthermore, reported pharmacokinetics for patient subgroups allow more appropriate selection of population parameters to be used in protocols with fewer imaging time points that facilitate more widespread adoption of dosimetry.
Page 76 of 100991 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.