Sort by:
Page 74 of 1231228 results

Federated Learning for MRI-based BrainAGE: a multicenter study on post-stroke functional outcome prediction

Vincent Roca, Marc Tommasi, Paul Andrey, Aurélien Bellet, Markus D. Schirmer, Hilde Henon, Laurent Puy, Julien Ramon, Grégory Kuchcinski, Martin Bretzner, Renaud Lopes

arxiv logopreprintJun 18 2025
$\textbf{Objective:}$ Brain-predicted age difference (BrainAGE) is a neuroimaging biomarker reflecting brain health. However, training robust BrainAGE models requires large datasets, often restricted by privacy concerns. This study evaluates the performance of federated learning (FL) for BrainAGE estimation in ischemic stroke patients treated with mechanical thrombectomy, and investigates its association with clinical phenotypes and functional outcomes. $\textbf{Methods:}$ We used FLAIR brain images from 1674 stroke patients across 16 hospital centers. We implemented standard machine learning and deep learning models for BrainAGE estimates under three data management strategies: centralized learning (pooled data), FL (local training at each site), and single-site learning. We reported prediction errors and examined associations between BrainAGE and vascular risk factors (e.g., diabetes mellitus, hypertension, smoking), as well as functional outcomes at three months post-stroke. Logistic regression evaluated BrainAGE's predictive value for these outcomes, adjusting for age, sex, vascular risk factors, stroke severity, time between MRI and arterial puncture, prior intravenous thrombolysis, and recanalisation outcome. $\textbf{Results:}$ While centralized learning yielded the most accurate predictions, FL consistently outperformed single-site models. BrainAGE was significantly higher in patients with diabetes mellitus across all models. Comparisons between patients with good and poor functional outcomes, and multivariate predictions of these outcomes showed the significance of the association between BrainAGE and post-stroke recovery. $\textbf{Conclusion:}$ FL enables accurate age predictions without data centralization. The strong association between BrainAGE, vascular risk factors, and post-stroke recovery highlights its potential for prognostic modeling in stroke care.

Identification, characterisation and outcomes of pre-atrial fibrillation in heart failure with reduced ejection fraction.

Helbitz A, Nadarajah R, Mu L, Larvin H, Ismail H, Wahab A, Thompson P, Harrison P, Harris M, Joseph T, Plein S, Petrie M, Metra M, Wu J, Swoboda P, Gale CP

pubmed logopapersJun 18 2025
Atrial fibrillation (AF) in heart failure with reduced ejection fraction (HFrEF) has prognostic implications. Using a machine learning algorithm (FIND-AF), we aimed to explore clinical events and the cardiac magnetic resonance (CMR) characteristics of the pre-AF phenotype in HFrEF. A cohort of individuals aged ≥18 years with HFrEF without AF from the MATCH 1 and MATCH 2 studies (2018-2024) stratified by FIND-AF score. All received cardiac magnetic resonance using Cvi42 software for volumetric and T1/T2. The primary outcome was time to a composite of MACE inclusive of heart failure hospitalisation, myocardial infarction, stroke and all-cause mortality. Secondary outcomes included the association between CMR findings and FIND-AF score. Of 385 patients [mean age 61.7 (12.6) years, 39.0% women] with a median 2.5 years follow-up, the primary outcome occurred in 58 (30.2%) patients in the high FIND-AF risk group and 23 (11.9%) in the low FIND-AF risk group (hazard ratio 3.25, 95% CI 2.00-5.28, P < 0.001). Higher FIND-AF score was associated with higher indexed left ventricular mass (β = 4.7, 95% CI 0.5-8.9), indexed left atrial volume (β = 5.9, 95% CI 2.2-9.6), higher indexed left ventricular end-diastolic volume (β = 9.55, 95% CI 1.37-17.74, P = 0.022), native T1 signal (β = 18.0, 95% CI 7.0-29.1) and extracellular volume (β = 1.6, 95% CI 0.6-2.5). A pre-AF HFrEF subgroup with distinct CMR characteristics and poor prognosis may be identified, potentially guiding interventions to reduce clinical events.

Dual-scan self-learning denoising for application in ultralow-field MRI.

Zhang Y, He W, Wu J, Xu Z

pubmed logopapersJun 18 2025
This study develops a self-learning method to denoise MR images for use in ultralow field (ULF) applications. We propose use of a self-learning neural network for denoising 3D MRI obtained from two acquisitions (dual scan), which are utilized as training pairs. Based on the self-learning method Noise2Noise, an effective data augmentation method and integrated learning strategy for enhancing model performance are proposed. Experimental results demonstrate that (1) the proposed model can produce exceptional denoising results and outperform the traditional Noise2Noise method subjectively and objectively; (2) magnitude images can be effectively denoised comparing with several state-of-the-art methods on synthetic and real ULF data; and (3) the proposed method can yield better results on phase images and quantitative imaging applications than other denoisers due to the self-learning framework. Theoretical and experimental implementations show that the proposed self-learning model achieves improved performance on magnitude image denoising with synthetic and real-world data at ULF. Additionally, we test our method on calculated phase and quantification images, demonstrating its superior performance over several contrastive methods.

Hierarchical refinement with adaptive deformation cascaded for multi-scale medical image registration.

Hussain N, Yan Z, Cao W, Anwar M

pubmed logopapersJun 18 2025
Deformable image registration is a fundamental task in medical image analysis, which is crucial in enabling early detection and accurate disease diagnosis. Although transformer-based architectures have demonstrated strong potential through attention mechanisms, challenges remain in ineffective feature extraction and spatial alignment, particularly within hierarchical attention frameworks. To address these limitations, we propose a novel registration framework that integrates hierarchical feature encoding in the encoder and an adaptive cascaded refinement strategy in the decoder. The model employs hierarchical cross-attention between fixed and moving images at multiple scales, enabling more precise alignment and improved registration accuracy. The decoder incorporates the Adaptive Cascaded Module (ACM), facilitating progressive deformation field refinement across multiple resolution levels. This approach captures coarse global transformations and acceptable local variations, resulting in smooth and anatomically consistent alignment. However, rather than relying solely on the final decoder output, our framework leverages intermediate representations at each stage of the network, enhancing the robustness and precision of the registration process. Our method achieves superior accuracy and adaptability by integrating deformations across all scales. Comprehensive experiments on two widely used 3D brain MRI datasets, OASIS and LPBA40, demonstrate that the proposed framework consistently outperforms existing state-of-the-art approaches across multiple evaluation metrics regarding accuracy, robustness, and generalizability.

Artificial Intelligence-Assisted Segmentation of Prostate Tumors and Neurovascular Bundles: Applications in Precision Surgery for Prostate Cancer.

Mei H, Yang R, Huang J, Jiao P, Liu X, Chen Z, Chen H, Zheng Q

pubmed logopapersJun 18 2025
The aim of this study was to guide prostatectomy by employing artificial intelligence for the segmentation of tumor gross tumor volume (GTV) and neurovascular bundles (NVB). The preservation and dissection of NVB differ between intrafascial and extrafascial robot-assisted radical prostatectomy (RARP), impacting postoperative urinary control. We trained the nnU-Net v2 neural network using data from 220 patients in the PI-CAI cohort for the segmentation of prostate GTV and NVB in biparametric magnetic resonance imaging (bpMRI). The model was then validated in an external cohort of 209 patients from Renmin Hospital of Wuhan University (RHWU). Utilizing three-dimensional reconstruction and point cloud analysis, we explored the spatial distribution of GTV and NVB in relation to intrafascial and extrafascial approaches. We also prospectively included 40 patients undergoing intrafascial and extrafascial RARP, applying the aforementioned procedure to classify the surgical approach. Additionally, 3D printing was employed to guide surgery, and follow-ups on short- and long-term urinary function in patients were conducted. The nnU-Net v2 neural network demonstrated precise segmentation of GTV, NVB, and prostate, achieving Dice scores of 0.5573 ± 0.0428, 0.7679 ± 0.0178, and 0.7483 ± 0.0290, respectively. By establishing the distance from GTV to NVB, we successfully predicted the surgical approach. Urinary control analysis revealed that the extrafascial approach yielded better postoperative urinary function, facilitating more refined management of patients with prostate cancer and personalized medical care. Artificial intelligence technology can accurately identify GTV and NVB in preoperative bpMRI of patients with prostate cancer and guide the choice between intrafascial and extrafascial RARP. Patients undergoing intrafascial RARP with preserved NVB demonstrate improved postoperative urinary control.

Cardiovascular risk in childhood and young adulthood is associated with the hemodynamic response function in midlife: The Bogalusa Heart Study.

Chuang KC, Naseri M, Ramakrishnapillai S, Madden K, Amant JS, McKlveen K, Gwizdala K, Dhullipudi R, Bazzano L, Carmichael O

pubmed logopapersJun 18 2025
In functional MRI, a hemodynamic response function (HRF) describes how neural events are translated into a blood oxygenation response detected through imaging. The HRF has the potential to quantify neurovascular mechanisms by which cardiovascular risks modify brain health, but relationships among HRF characteristics, brain health, and cardiovascular modifiers of brain health have not been well studied to date. One hundred and thirty-seven middle-aged participants (mean age: 53.6±4.7, female (62%), 78% White American participants and 22% African American participants) in the exploratory analysis from Bogalusa Heart Study completed clinical evaluations from childhood to midlife and an adaptive Stroop task during fMRI in midlife. The HRFs of each participant within seventeen brain regions of interest (ROIs) previously identified as activated by this task were calculated using a convolutional neural network approach. Faster and more efficient neurovascular functioning was characterized in terms of five HRF characteristics: faster time to peak (TTP), shorter full width at half maximum (FWHM), smaller peak magnitude (PM), smaller trough magnitude (TM), and smaller area under the HRF curve (AUHRF). The composite HRF summary characteristics over all ROIs were calculated for multivariable and simple linear regression analyses. In multivariable models, faster and more efficient HRF characteristic was found in non-smoker compared to smokers (AUHRF, p = 0.029). Faster and more efficient HRF characteristics were associated with lower systolic and diastolic blood pressures (FWHM, TM, and AUHRF, p = 0.030, 0.042, and 0.032) and cerebral amyloid burden (FWHM, p-value = 0.027) in midlife; as well as greater response rate on the Stroop task (FWHM, p = 0.042) in midlife. In simple linear regression models, faster and more efficient HRF characteristics were found in women compared to men (TM, p = 0.019); in White American participants compared to African American participants (AUHRF, p = 0.044); and in non-smokers compared to smokers (TTP and AUHRF, p = 0.019 and 0.010). Faster and more efficient HRF characteristics were associated with lower systolic and diastolic blood pressures (FWHM and TM, p = 0.019 and 0.029), and lower BMI (FWHM and AUHRF, p = 0.025 and 0.017), in childhood and adolescence; and lower BMI (TTP, p = 0.049), cerebral amyloid burden (FWHM, p = 0.002), and white matter hyperintensity burden (FWHM, p = 0.046) in midlife; as well as greater accuracy on the Stroop task (AUHRF, p = 0.037) in midlife. In a diverse middle-aged community sample, HRF-based indicators of faster and more efficient neurovascular functioning were associated with better brain health and cognitive function, as well as better lifespan cardiovascular health.

Comparison of publicly available artificial intelligence models for pancreatic segmentation on T1-weighted Dixon images.

Sonoda Y, Fujisawa S, Kurokawa M, Gonoi W, Hanaoka S, Yoshikawa T, Abe O

pubmed logopapersJun 18 2025
This study aimed to compare three publicly available deep learning models (TotalSegmentator, TotalVibeSegmentator, and PanSegNet) for automated pancreatic segmentation on magnetic resonance images and to evaluate their performance against human annotations in terms of segmentation accuracy, volumetric measurement, and intrapancreatic fat fraction (IPFF) assessment. Twenty upper abdominal T1-weighted magnetic resonance series acquired using the two-point Dixon method were randomly selected. Three radiologists manually segmented the pancreas, and a ground-truth mask was constructed through a majority vote per voxel. Pancreatic segmentation was also performed using the three artificial intelligence models. Performance was evaluated using the Dice similarity coefficient (DSC), 95th-percentile Hausdorff distance, average symmetric surface distance, positive predictive value, sensitivity, Bland-Altman plots, and concordance correlation coefficient (CCC) for pancreatic volume and IPFF. PanSegNet achieved the highest DSC (mean ± standard deviation, 0.883 ± 0.095) and showed no statistically significant difference from the human interobserver DSC (0.896 ± 0.068; p = 0.24). In contrast, TotalVibeSegmentator (0.731 ± 0.105) and TotalSegmentator (0.707 ± 0.142) had significantly lower DSC values compared with the human interobserver average (p < 0.001). For pancreatic volume and IPFF, PanSegNet demonstrated the best agreement with the ground truth (CCC values of 0.958 and 0.993, respectively), followed by TotalSegmentator (0.834 and 0.980) and TotalVibeSegmentator (0.720 and 0.672). PanSegNet demonstrated the highest segmentation accuracy and the best agreement with human measurements for both pancreatic volume and IPFF on T1-weighted Dixon images. This model appears to be the most suitable for large-scale studies requiring automated pancreatic segmentation and intrapancreatic fat evaluation.

RESIGN: Alzheimer's Disease Detection Using Hybrid Deep Learning based Res-Inception Seg Network.

Amsavalli K, Suba Raja SK, Sudha S

pubmed logopapersJun 18 2025
Alzheimer's disease (AD) is a leading cause of death, making early detection critical to improve survival rates. Conventional manual techniques struggle with early diagnosis due to the brain's complex structure, necessitating the use of dependable deep learning (DL) methods. This research proposes a novel RESIGN model is a combination of Res-InceptionSeg for detecting AD utilizing MRI images. The input MRI images were pre-processed using a Non-Local Means (NLM) filter to reduce noise artifacts. A ResNet-LSTM model was used for feature extraction, targeting White Matter (WM), Grey Matter (GM), and Cerebrospinal Fluid (CSF). The extracted features were concatenated and classified into Normal, MCI, and AD categories using an Inception V3-based classifier. Additionally, SegNet was employed for abnormal brain region segmentation. The RESIGN model achieved an accuracy of 99.46%, specificity of 98.68%, precision of 95.63%, recall of 97.10%, and an F1 score of 95.42%. It outperformed ResNet, AlexNet, Dense- Net, and LSTM by 7.87%, 5.65%, 3.92%, and 1.53%, respectively, and further improved accuracy by 25.69%, 5.29%, 2.03%, and 1.71% over ResNet18, CLSTM, VGG19, and CNN, respectively. The integration of spatial-temporal feature extraction, hybrid classification, and deep segmentation makes RESIGN highly reliable in detecting AD. A 5-fold cross-validation proved its robustness, and its performance exceeded that of existing models on the ADNI dataset. However, there are potential limitations related to dataset bias and limited generalizability due to uniform imaging conditions. The proposed RESIGN model demonstrates significant improvement in early AD detection through robust feature extraction and classification by offering a reliable tool for clinical diagnosis.

USING ARTIFICIAL INTELLIGENCE TO PREDICT TREATMENT OUTCOMES IN PATIENTS WITH NEUROGENIC OVERACTIVE BLADDER AND MULTIPLE SCLEROSIS

Chang, O., Lee, J., Lane, F., Demetriou, M., Chang, P.

medrxiv logopreprintJun 18 2025
Introduction and ObjectivesMany women with multiple sclerosis (MS) experience neurogenic overactive bladder (NOAB) characterized by urinary frequency, urinary urgency and urgency incontinence. The objective of the study was to create machine learning (ML) models utilizing clinical and imaging data to predict NOAB treatment success stratified by treatment type. MethodsThis was a retrospective cohort study of female patients with diagnosis of NOAB and MS seen at a tertiary academic center from 2017-2022. Clinical and imaging data were extracted. Three types of NOAB treatment options evaluated included behavioral therapy, medication therapy and minimally invasive therapies. The primary outcome - treatment success was defined as > 50% reduction in urinary frequency, urinary urgency or a subjective perception of treatment success. For the construction of the logistic regression ML models, bivariate analyses were performed with backward selection of variables with p-values of < 0.10 and clinically relevant variables applied. For ML, the cohort was split into a training dataset (70%) and a test dataset (30%). Area under the curve (AUC) scores are calculated to evaluate model performance. ResultsThe 110 patients included had a mean age of patients were 59 years old (SD 14 years), with a predominantly White cohort (91.8%), post-menopausal (68.2%). Patients were stratified by NOAB treatment therapy type received with 70 patients (63.6%) at behavioral therapy, 58 (52.7%) with medication therapy and 44 (40%) with minimally invasive therapies. On MRI brain imaging, 63.6% of patients had > 20 lesions though majority were not active lesions. The lesions were mostly located within the supratentorial (94.5%), infratentorial (68.2%) and 58.2 infratentorial brain (63.8%) as well as in the deep white matter (53.4%). For MRI spine imaging, most of the lesions were in the cervical spine (71.8%) followed by thoracic spine (43.7%) and lumbar spine (6.4%).10.3%). After feature selection, the top 10 highest ranking features were used to train complimentary LASSO-regularized logistic regression (LR) and extreme gradient-boosted tree (XGB) models. The top-performing LR models for predicting response to behavioral, medication, and minimally invasive therapies yielded AUC values of 0.74, 0.76, and 0.83, respectively. ConclusionsUsing these top-ranked features, LR models achieved AUC values of 0.74-0.83 for prediction of treatment success based on individual factors. Further prospective evaluation is needed to better characterize and validate these identified associations.

BRISC: Annotated Dataset for Brain Tumor Segmentation and Classification with Swin-HAFNet

Amirreza Fateh, Yasin Rezvani, Sara Moayedi, Sadjad Rezvani, Fatemeh Fateh, Mansoor Fateh

arxiv logopreprintJun 17 2025
Accurate segmentation and classification of brain tumors from Magnetic Resonance Imaging (MRI) remain key challenges in medical image analysis, largely due to the lack of high-quality, balanced, and diverse datasets. In this work, we present a new curated MRI dataset designed specifically for brain tumor segmentation and classification tasks. The dataset comprises 6,000 contrast-enhanced T1-weighted MRI scans annotated by certified radiologists and physicians, spanning three major tumor types-glioma, meningioma, and pituitary-as well as non-tumorous cases. Each sample includes high-resolution labels and is categorized across axial, sagittal, and coronal imaging planes to facilitate robust model development and cross-view generalization. To demonstrate the utility of the dataset, we propose a transformer-based segmentation model and benchmark it against established baselines. Our method achieves the highest weighted mean Intersection-over-Union (IoU) of 82.3%, with improvements observed across all tumor categories. Importantly, this study serves primarily as an introduction to the dataset, establishing foundational benchmarks for future research. We envision this dataset as a valuable resource for advancing machine learning applications in neuro-oncology, supporting both academic research and clinical decision-support development. datasetlink: https://www.kaggle.com/datasets/briscdataset/brisc2025/
Page 74 of 1231228 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.