Sort by:
Page 74 of 81804 results

Enhancing Craniomaxillofacial Surgeries with Artificial Intelligence Technologies.

Do W, van Nistelrooij N, Bergé S, Vinayahalingam S

pubmed logopapersMay 16 2025
Artificial intelligence (AI) can be applied in multiple subspecialties in craniomaxillofacial (CMF) surgeries. This article overviews AI fundamentals focusing on classification, object detection, and segmentation-core tasks used in CMF applications. The article then explores the development and integration of AI in dentoalveolar surgery, implantology, traumatology, oncology, craniofacial surgery, and orthognathic and feminization surgery. It highlights AI-driven advancements in diagnosis, pre-operative planning, intra-operative assistance, post-operative management, and outcome prediction. Finally, the challenges in AI adoption are discussed, including data limitations, algorithm validation, and clinical integration.

Residual self-attention vision transformer for detecting acquired vitelliform lesions and age-related macular drusen.

Powroznik P, Skublewska-Paszkowska M, Nowomiejska K, Gajda-Deryło B, Brinkmann M, Concilio M, Toro MD, Rejdak R

pubmed logopapersMay 16 2025
Retinal diseases recognition is still a challenging task. Many deep learning classification methods and their modifications have been developed for medical imaging. Recently, Vision Transformers (ViT) have been applied for classification of retinal diseases with great success. Therefore, in this study a novel method was proposed, the Residual Self-Attention Vision Transformer (RS-A ViT), for automatic detection of acquired vitelliform lesions (AVL), macular drusen as well as distinguishing them from healthy cases. The Residual Self-Attention module instead of Self-Attention was applied in order to improve model's performance. The new tool outperforms the classical deep learning methods, like EfficientNet, InceptionV3, ResNet50 and VGG16. The RS-A ViT method also exceeds the ViT algorithm, reaching 96.62%. For the purpose of this research a new dataset was created that combines AVL data gathered from two research centers and drusen as well as normal cases from the OCT dataset. The augmentation methods were applied in order to enlarge the samples. The Grad-CAM interpretability method indicated that this model analyses the appropriate areas in optical coherence tomography images in order to detect retinal diseases. The results proved that the presented RS-A ViT model has a great potential in classification retinal disorders with high accuracy and thus may be applied as a supportive tool for ophthalmologists.

Fluid fluctuations assessed with artificial intelligence during the maintenance phase impact anti-vascular endothelial growth factor visual outcomes in a multicentre, routine clinical care national age-related macular degeneration database.

Martin-Pinardel R, Izquierdo-Serra J, Bernal-Morales C, De Zanet S, Garay-Aramburu G, Puzo M, Arruabarrena C, Sararols L, Abraldes M, Broc L, Escobar-Barranco JJ, Figueroa M, Zapata MA, Ruiz-Moreno JM, Parrado-Carrillo A, Moll-Udina A, Alforja S, Figueras-Roca M, Gómez-Baldó L, Ciller C, Apostolopoulos S, Mishchuk A, Casaroli-Marano RP, Zarranz-Ventura J

pubmed logopapersMay 16 2025
To evaluate the impact of fluid volume fluctuations quantified with artificial intelligence in optical coherence tomography scans during the maintenance phase and visual outcomes at 12 and 24 months in a real-world, multicentre, national cohort of treatment-naïve neovascular age-related macular degeneration (nAMD) eyes. Demographics, visual acuity (VA) and number of injections were collected using the Fight Retinal Blindness tool. Intraretinal fluid (IRF), subretinal fluid (SRF), pigment epithelial detachment (PED), total fluid (TF) and central subfield thickness (CST) were quantified using the RetinAI Discovery tool. Fluctuations were defined as the SD of within-eye quantified values, and eyes were distributed according to SD quartiles for each biomarker. A total of 452 naïve nAMD eyes were included. Eyes with highest (Q4) versus lowest (Q1) fluid fluctuations showed significantly worse VA change (months 3-12) in IRF -3.91 versus 3.50 letters, PED -4.66 versus 3.29, TF -2.07 versus 2.97 and CST -1.85 versus 2.96 (all p<0.05), but not for SRF 0.66 versus 0.93 (p=0.91). Similar VA outcomes were observed at month 24 for PED -8.41 versus 4.98 (p<0.05), TF -7.38 versus 1.89 (p=0.07) and CST -10.58 versus 3.60 (p<0.05). The median number of injections (months 3-24) was significantly higher in Q4 versus Q1 eyes in IRF 9 versus 8, SRF 10 versus 8 and TF 10 versus 8 (all p<0.05). This multicentre study reports a negative effect in VA outcomes of fluid volume fluctuations during the maintenance phase in specific fluid compartments, suggesting that anatomical and functional treatment response patterns may be fluid-specific.

UGoDIT: Unsupervised Group Deep Image Prior Via Transferable Weights

Shijun Liang, Ismail R. Alkhouri, Siddhant Gautam, Qing Qu, Saiprasad Ravishankar

arxiv logopreprintMay 16 2025
Recent advances in data-centric deep generative models have led to significant progress in solving inverse imaging problems. However, these models (e.g., diffusion models (DMs)) typically require large amounts of fully sampled (clean) training data, which is often impractical in medical and scientific settings such as dynamic imaging. On the other hand, training-data-free approaches like the Deep Image Prior (DIP) do not require clean ground-truth images but suffer from noise overfitting and can be computationally expensive as the network parameters need to be optimized for each measurement set independently. Moreover, DIP-based methods often overlook the potential of learning a prior using a small number of sub-sampled measurements (or degraded images) available during training. In this paper, we propose UGoDIT, an Unsupervised Group DIP via Transferable weights, designed for the low-data regime where only a very small number, M, of sub-sampled measurement vectors are available during training. Our method learns a set of transferable weights by optimizing a shared encoder and M disentangled decoders. At test time, we reconstruct the unseen degraded image using a DIP network, where part of the parameters are fixed to the learned weights, while the remaining are optimized to enforce measurement consistency. We evaluate UGoDIT on both medical (multi-coil MRI) and natural (super resolution and non-linear deblurring) image recovery tasks under various settings. Compared to recent standalone DIP methods, UGoDIT provides accelerated convergence and notable improvement in reconstruction quality. Furthermore, our method achieves performance competitive with SOTA DM-based and supervised approaches, despite not requiring large amounts of clean training data.

Deep learning model based on ultrasound images predicts BRAF V600E mutation in papillary thyroid carcinoma.

Yu Y, Zhao C, Guo R, Zhang Y, Li X, Liu N, Lu Y, Han X, Tang X, Mao R, Peng C, Yu J, Zhou J

pubmed logopapersMay 16 2025
BRAF V600E mutation status detection facilitates prognosis prediction in papillary thyroid carcinoma (PTC). We developed a deep-learning model to determine the BRAF V600E status in PTC. PTC from three centers were collected as the training set (1341 patients), validation set (148 patients), and external test set (135 patients). After testing the performance of the ResNeSt-50, Vision Transformer, and Swin Transformer V2 (SwinT) models, SwinT was chosen as the optimal backbone. An integrated BrafSwinT model was developed by combining the backbone with a radiomics feature branch and a clinical parameter branch. BrafSwinT demonstrated an AUC of 0.869 in the external test set, outperforming the original SwinT, Vision Transformer, and ResNeSt-50 models (AUC: 0.782-0.824; <i>p</i> value: 0.017-0.041). BrafSwinT showed promising results in determining BRAF V600E mutation status in PTC based on routinely acquired ultrasound images and basic clinical information, thus facilitating risk stratification.

Escarcitys: A framework for enhancing medical image classification performance in scarcity of trainable samples scenarios.

Wang T, Dai Q, Xiong W

pubmed logopapersMay 16 2025
In the field of healthcare, the acquisition and annotation of medical images present significant challenges, resulting in a scarcity of trainable samples. This data limitation hinders the performance of deep learning models, creating bottlenecks in clinical applications. To address this issue, we construct a framework (EScarcityS) aimed at enhancing the success rate of disease diagnosis in scarcity of trainable medical image scenarios. Firstly, considering that Transformer-based deep learning networks rely on a large amount of trainable data, this study takes into account the unique characteristics of pathological regions. By extracting the feature representations of all particles in medical images at different granularities, a multi-granularity Transformer network (MGVit) is designed. This network leverages additional prior knowledge to assist the Transformer network during training, thereby reducing the data requirement to some extent. Next, the importance maps of particles at different granularities, generated by MGVit, are fused to construct disease probability maps corresponding to the images. Based on these maps, a disease probability map-guided diffusion generation model is designed to generate more realistic and interpretable synthetic data. Subsequently, authentic and synthetical data are mixed and used to retrain MGVit, aiming to enhance the accuracy of medical image classification in scarcity of trainable medical image scenarios. Finally, we conducted detailed experiments on four real medical image datasets to validate the effectiveness of EScarcityS and its specific modules.

Enhancing medical explainability in deep learning for age-related macular degeneration diagnosis.

Shi L

pubmed logopapersMay 15 2025
Deep learning models hold significant promise for disease diagnosis but often lack transparency in their decision-making processes, limiting trust and hindering clinical adoption. This study introduces a novel multi-task learning framework to enhance the medical explainability of deep learning models for diagnosing age-related macular degeneration (AMD) using fundus images. The framework simultaneously performs AMD classification and lesion segmentation, allowing the model to support its diagnoses with AMD-associated lesions identified through segmentation. In addition, we perform an in-depth interpretability analysis of the model, proposing the Medical Explainability Index (MXI), a novel metric that quantifies the medical relevance of the generated heatmaps by comparing them with the model's lesion segmentation output. This metric provides a measurable basis to evaluate whether the model's decisions are grounded in clinically meaningful information. The proposed method was trained and evaluated on the Automatic Detection Challenge on Age-Related Macular Degeneration (ADAM) dataset. Experimental results demonstrate robust performance, achieving an area under the curve (AUC) of 0.96 for classification and a Dice similarity coefficient (DSC) of 0.59 for segmentation, outperforming single-task models. By offering interpretable and clinically relevant insights, our approach aims to foster greater trust in AI-driven disease diagnosis and facilitate its adoption in clinical practice.

[Orthodontics in the CBCT era: 25 years later, what are the guidelines?].

Foucart JM, Papelard N, Bourriau J

pubmed logopapersMay 15 2025
CBCT has become an essential tool in orthodontics, although its use must remain judicious and evidence-based. This study provides an updated analysis of international recommendations concerning the use of CBCT in orthodontics, with a particular focus on clinical indications, radiation dose reduction, and recent technological advancements. A systematic review of guidelines published between 2015 and 2025 was conducted following the PRISMA methodology. Inclusion criteria comprised official directives from recognized scientific societies and clinical studies evaluating low dose protocols in orthodontics. The analysis of the 19 retained recommendations reveals a consensus regarding the primary indications for CBCT in orthodontics, particularly for impacted teeth, skeletal anomalies, periodontal and upper airways assessment. Dose optimization and the integration of artificial intelligence emerge as major advancements, enabling significant radiation reduction while preserving diagnostic accuracy. The development of low dose protocols and advanced reconstruction algorithms presents promising perspectives for safer and more efficient imaging, increasingly replacing conventional 2D radiographic techniques. However, an international harmonization of recommendations for these new imaging sequences is imperative to standardize clinical practices and enhance patient radioprotection.

Ordered-subsets Multi-diffusion Model for Sparse-view CT Reconstruction

Pengfei Yu, Bin Huang, Minghui Zhang, Weiwen Wu, Shaoyu Wang, Qiegen Liu

arxiv logopreprintMay 15 2025
Score-based diffusion models have shown significant promise in the field of sparse-view CT reconstruction. However, the projection dataset is large and riddled with redundancy. Consequently, applying the diffusion model to unprocessed data results in lower learning effectiveness and higher learning difficulty, frequently leading to reconstructed images that lack fine details. To address these issues, we propose the ordered-subsets multi-diffusion model (OSMM) for sparse-view CT reconstruction. The OSMM innovatively divides the CT projection data into equal subsets and employs multi-subsets diffusion model (MSDM) to learn from each subset independently. This targeted learning approach reduces complexity and enhances the reconstruction of fine details. Furthermore, the integration of one-whole diffusion model (OWDM) with complete sinogram data acts as a global information constraint, which can reduce the possibility of generating erroneous or inconsistent sinogram information. Moreover, the OSMM's unsupervised learning framework provides strong robustness and generalizability, adapting seamlessly to varying sparsity levels of CT sinograms. This ensures consistent and reliable performance across different clinical scenarios. Experimental results demonstrate that OSMM outperforms traditional diffusion models in terms of image quality and noise resilience, offering a powerful and versatile solution for advanced CT imaging in sparse-view scenarios.

Automated Microbubble Discrimination in Ultrasound Localization Microscopy by Vision Transformer.

Wang R, Lee WN

pubmed logopapersMay 15 2025
Ultrasound localization microscopy (ULM) has revolutionized microvascular imaging by breaking the acoustic diffraction limit. However, different ULM workflows depend heavily on distinct prior knowledge, such as the impulse response and empirical selection of parameters (e.g., the number of microbubbles (MBs) per frame M), or the consistency of training-test dataset in deep learning (DL)-based studies. We hereby propose a general ULM pipeline that reduces priors. Our approach leverages a DL model that simultaneously distills microbubble signals and reduces speckle from every frame without estimating the impulse response and M. Our method features an efficient channel attention vision transformer (ViT) and a progressive learning strategy, enabling it to learn global information through training on progressively increasing patch sizes. Ample synthetic data were generated using the k-Wave toolbox to simulate various MB patterns, thus overcoming the deficiency of labeled data. The ViT output was further processed by a standard radial symmetry method for sub-pixel localization. Our method performed well on model-unseen public datasets: one in silico dataset with ground truth and four in vivo datasets of mouse tumor, rat brain, rat brain bolus, and rat kidney. Our pipeline outperformed conventional ULM, achieving higher positive predictive values (precision in DL, 0.88-0.41 vs. 0.83-0.16) and improved accuracy (root-mean-square errors: 0.25-0.14 λ vs. 0.31-0.13 λ) across a range of signal-to-noise ratios from 60 dB to 10 dB. Our model could detect more vessels in diverse in vivo datasets while achieving comparable resolutions to the standard method. The proposed ViT-based model, seamlessly integrated with state-of-the-art downstream ULM steps, improved the overall ULM performance with no priors.
Page 74 of 81804 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.