Sort by:
Page 73 of 1341333 results

Structural uncertainty estimation for medical image segmentation.

Yang B, Zhang X, Zhang H, Li S, Higashita R, Liu J

pubmed logopapersJul 1 2025
Precise segmentation and uncertainty estimation are crucial for error identification and correction in medical diagnostic assistance. Existing methods mainly rely on pixel-wise uncertainty estimations. They (1) neglect the global context, leading to erroneous uncertainty indications, and (2) bring attention interference, resulting in the waste of extensive details and potential understanding confusion. In this paper, we propose a novel structural uncertainty estimation method, based on Convolutional Neural Networks (CNN) and Active Shape Models (ASM), named SU-ASM, which incorporates global shape information for providing precise segmentation and uncertainty estimation. The SU-ASM consists of three components. Firstly, multi-task generation provides multiple outcomes to assist ASM initialization and shape optimization via a multi-task learning module. Secondly, information fusion involves the creation of a Combined Boundary Probability (CBP) and along with a rapid shape initialization algorithm, Key Landmark Template Matching (KLTM), to enhance boundary reliability and select appropriate shape templates. Finally, shape model fitting where multiple shape templates are matched to the CBP while maintaining their intrinsic shape characteristics. Fitted shapes generate segmentation results and structural uncertainty estimations. The SU-ASM has been validated on cardiac ultrasound dataset, ciliary muscle dataset of the anterior eye segment, and the chest X-ray dataset. It outperforms state-of-the-art methods in terms of segmentation and uncertainty estimation.

CAD-Unet: A capsule network-enhanced Unet architecture for accurate segmentation of COVID-19 lung infections from CT images.

Dang Y, Ma W, Luo X, Wang H

pubmed logopapersJul 1 2025
Since the outbreak of the COVID-19 pandemic in 2019, medical imaging has emerged as a primary modality for diagnosing COVID-19 pneumonia. In clinical settings, the segmentation of lung infections from computed tomography images enables rapid and accurate quantification and diagnosis of COVID-19. Segmentation of COVID-19 infections in the lungs poses a formidable challenge, primarily due to the indistinct boundaries and limited contrast presented by ground glass opacity manifestations. Moreover, the confounding similarity among infiltrates, lung tissues, and lung walls further complicates this segmentation task. To address these challenges, this paper introduces a novel deep network architecture, called CAD-Unet, for segmenting COVID-19 lung infections. In this architecture, capsule networks are incorporated into the existing Unet framework. Capsule networks represent a novel type of network architecture that differs from traditional convolutional neural networks. They utilize vectors for information transfer among capsules, facilitating the extraction of intricate lesion spatial information. Additionally, we design a capsule encoder path and establish a coupling path between the unet encoder and the capsule encoder. This design maximizes the complementary advantages of both network structures while achieving efficient information fusion. Finally, extensive experiments are conducted on four publicly available datasets, encompassing binary segmentation tasks and multi-class segmentation tasks. The experimental results demonstrate the superior segmentation performance of the proposed model. The code has been released at: https://github.com/AmanoTooko-jie/CAD-Unet.

Automated Acetabular Defect Reconstruction and Analysis for Revision Total Hip Arthroplasty: A Computational Modeling Study.

Hopkins D, Callary SA, Solomon LB, Lee PVS, Ackland DC

pubmed logopapersJul 1 2025
Revision total hip arthroplasty (rTHA) involving large acetabular defects is associated with high early failure rates, primarily due to cup loosening. Most acetabular defect classification systems used in surgical planning are based on planar radiographs and do not encapsulate three-dimensional geometry and morphology of the acetabular defect. This study aimed to develop an automated computational modeling pipeline for rapid generation of three-dimensional acetabular bone defect geometry. The framework employed artificial neural network segmentation of preoperative pelvic computed tomography (CT) images and statistical shape model generation for defect reconstruction in 60 rTHA patients. Regional acetabular absolute defect volumes (ADV), relative defect volumes (RDV) and defect depths (DD) were calculated and stratified within Paprosky classifications. Defect geometries from the automated modeling pipeline were validated against manually reconstructed models and were found to have a mean dice coefficient of 0.827 and a mean relative volume error of 16.4%. The mean ADV, RDV and DD of classification groups generally increased with defect severity. Except for superior RDV and ADV between 3A and 2A defects, and anterior RDV and DD between 3B and 3A defects, statistically significant differences in ADV, RDV or DD were only found between 3B and 2B-2C defects (p < 0.05). Poor correlations observed between ADV, RDV, and DD within Paprosky classifications suggest that quantitative measures are not unique to each Paprosky grade. The automated modeling tools developed may be useful in surgical planning and computational modeling of rTHA.

An efficient attention Densenet with LSTM for lung disease detection and classification using X-ray images supported by adaptive R2-Unet-based image segmentation.

Betha SK, Dev DR, Sunkara K, Kodavanti PV, Putta A

pubmed logopapersJul 1 2025
Lung diseases represent one of the most prevalent health challenges globally, necessitating accurate diagnosis to improve patient outcomes. This work presents a novel deep learning-aided lung disease classification framework comprising three key phases: image acquisition, segmentation, and classification. Initially, chest X-ray images are taken from standard datasets. The lung regions are segmented using an Adaptive Recurrent Residual U-Net (AR2-UNet), whose parameters are optimised using Enhanced Pufferfish Optimisation Algorithm (EPOA) to enhance segmentation accuracy. The segmented images are processed using "Attention-based Densenet with Long Short Term Memory(ADNet-LSTM)" for robust categorisation. Investigational results demonstrate that the proposed model achieves the highest classification accuracy of 93.92%, significantly outperforming several baseline models including ResNet with 90.77%, Inception with 89.55%, DenseNet with 89.66%, and "Long Short Term Memory (LSTM)" with 91.79%. Thus, the proposed framework offers a dependable and efficient solution for lung disease detection, supporting clinicians in early and accurate diagnosis.

Rethinking boundary detection in deep learning-based medical image segmentation.

Lin Y, Zhang D, Fang X, Chen Y, Cheng KT, Chen H

pubmed logopapersJul 1 2025
Medical image segmentation is a pivotal task within the realms of medical image analysis and computer vision. While current methods have shown promise in accurately segmenting major regions of interest, the precise segmentation of boundary areas remains challenging. In this study, we propose a novel network architecture named CTO, which combines Convolutional Neural Networks (CNNs), Vision Transformer (ViT) models, and explicit edge detection operators to tackle this challenge. CTO surpasses existing methods in terms of segmentation accuracy and strikes a better balance between accuracy and efficiency, without the need for additional data inputs or label injections. Specifically, CTO adheres to the canonical encoder-decoder network paradigm, with a dual-stream encoder network comprising a mainstream CNN stream for capturing local features and an auxiliary StitchViT stream for integrating long-range dependencies. Furthermore, to enhance the model's ability to learn boundary areas, we introduce a boundary-guided decoder network that employs binary boundary masks generated by dedicated edge detection operators to provide explicit guidance during the decoding process. We validate the performance of CTO through extensive experiments conducted on seven challenging medical image segmentation datasets, namely ISIC 2016, PH2, ISIC 2018, CoNIC, LiTS17, BraTS, and BTCV. Our experimental results unequivocally demonstrate that CTO achieves state-of-the-art accuracy on these datasets while maintaining competitive model complexity. The codes have been released at: CTO.

Towards Foundation Models and Few-Shot Parameter-Efficient Fine-Tuning for Volumetric Organ Segmentation.

Silva-Rodríguez J, Dolz J, Ben Ayed I

pubmed logopapersJul 1 2025
The recent popularity of foundation models and the pre-train-and-adapt paradigm, where a large-scale model is transferred to downstream tasks, is gaining attention for volumetric medical image segmentation. However, current transfer learning strategies devoted to full fine-tuning for transfer learning may require significant resources and yield sub-optimal results when the labeled data of the target task is scarce. This makes its applicability in real clinical settings challenging since these institutions are usually constrained on data and computational resources to develop proprietary solutions. To address this challenge, we formalize Few-Shot Efficient Fine-Tuning (FSEFT), a novel and realistic scenario for adapting medical image segmentation foundation models. This setting considers the key role of both data- and parameter-efficiency during adaptation. Building on a foundation model pre-trained on open-access CT organ segmentation sources, we propose leveraging Parameter-Efficient Fine-Tuning and black-box Adapters to address such challenges. Furthermore, novel efficient adaptation methodologies are introduced in this work, which include Spatial black-box Adapters that are more appropriate for dense prediction tasks and constrained transductive inference, leveraging task-specific prior knowledge. Our comprehensive transfer learning experiments confirm the suitability of foundation models in medical image segmentation and unveil the limitations of popular fine-tuning strategies in few-shot scenarios. The project code is available: https://github.com/jusiro/fewshot-finetuning.

Deep learning-based auto-contouring of organs/structures-at-risk for pediatric upper abdominal radiotherapy.

Ding M, Maspero M, Littooij AS, van Grotel M, Fajardo RD, van Noesel MM, van den Heuvel-Eibrink MM, Janssens GO

pubmed logopapersJul 1 2025
This study aimed to develop a computed tomography (CT)-based multi-organ segmentation model for delineating organs-at-risk (OARs) in pediatric upper abdominal tumors and evaluate its robustness across multiple datasets. In-house postoperative CTs from pediatric patients with renal tumors and neuroblastoma (n = 189) and a public dataset (n = 189) with CTs covering thoracoabdominal regions were used. Seventeen OARs were delineated: nine by clinicians (Type 1) and eight using TotalSegmentator (Type 2). Auto-segmentation models were trained using in-house (Model-PMC-UMCU) and a combined dataset of public data (Model-Combined). Performance was assessed with Dice Similarity Coefficient (DSC), 95 % Hausdorff Distance (HD95), and mean surface distance (MSD). Two clinicians rated clinical acceptability on a 5-point Likert scale across 15 patient contours. Model robustness was evaluated against sex, age, intravenous contrast, and tumor type. Model-PMC-UMCU achieved mean DSC values above 0.95 for five of nine OARs, while the spleen and heart ranged between 0.90 and 0.95. The stomach-bowel and pancreas exhibited DSC values below 0.90. Model-Combined demonstrated improved robustness across both datasets. Clinical evaluation revealed good usability, with both clinicians rating six of nine Type 1 OARs above four and six of eight Type 2 OARs above three. Significant performance differences were only found across age groups in both datasets, specifically in the left lung and pancreas. The 0-2 age group showed the lowest performance. A multi-organ segmentation model was developed, showcasing enhanced robustness when trained on combined datasets. This model is suitable for various OARs and can be applied to multiple datasets in clinical settings.

Automated vertebrae identification and segmentation with structural uncertainty analysis in longitudinal CT scans of patients with multiple myeloma.

Madzia-Madzou DK, Jak M, de Keizer B, Verlaan JJ, Minnema MC, Gilhuijs K

pubmed logopapersJul 1 2025
Optimize deep learning-based vertebrae segmentation in longitudinal CT scans of multiple myeloma patients using structural uncertainty analysis. Retrospective CT scans from 474 multiple myeloma patients were divided into train (179 patients, 349 scans, 2005-2011) and test cohort (295 patients, 671 scans, 2012-2020). An enhanced segmentation pipeline was developed on the train cohort. It integrated vertebrae segmentation using an open-source deep learning method (Payer's) with a post-hoc structural uncertainty analysis. This analysis identified inconsistencies, automatically correcting them or flagging uncertain regions for human review. Segmentation quality was assessed through vertebral shape analysis using topology. Metrics included 'identification rate', 'longitudinal vertebral match rate', 'success rate' and 'series success rate' and evaluated across age/sex subgroups. Statistical analysis included McNemar and Wilcoxon signed-rank tests, with p < 0.05 indicating significant improvement. Payer's method achieved an identification rate of 95.8% and success rate of 86.7%. The proposed pipeline automatically improved these metrics to 98.8% and 96.0%, respectively (p < 0.001). Additionally, 3.6% of scans were marked for human inspection, increasing the success rate from 96.0% to 98.8% (p < 0.001). The vertebral match rate increased from 97.0% to 99.7% (p < 0.001), and the series success rate from 80.0% to 95.4% (p < 0.001). Subgroup analysis showed more consistent performance across age and sex groups. The proposed pipeline significantly outperforms Payer's method, enhancing segmentation accuracy and reducing longitudinal matching errors while minimizing evaluation workload. Its uncertainty analysis ensures robust performance, making it a valuable tool for longitudinal studies in multiple myeloma.

MED-NCA: Bio-inspired medical image segmentation.

Kalkhof J, Ihm N, Köhler T, Gregori B, Mukhopadhyay A

pubmed logopapersJul 1 2025
The reliance on computationally intensive U-Net and Transformer architectures significantly limits their accessibility in low-resource environments, creating a technological divide that hinders global healthcare equity, especially in medical diagnostics and treatment planning. This divide is most pronounced in low- and middle-income countries, primary care facilities, and conflict zones. We introduced MED-NCA, Neural Cellular Automata (NCA) based segmentation models characterized by their low parameter count, robust performance, and inherent quality control mechanisms. These features drastically lower the barriers to high-quality medical image analysis in resource-constrained settings, allowing the models to run efficiently on hardware as minimal as a Raspberry Pi or a smartphone. Building upon the foundation laid by MED-NCA, this paper extends its validation across eight distinct anatomies, including the hippocampus and prostate (MRI, 3D), liver and spleen (CT, 3D), heart and lung (X-ray, 2D), breast tumor (Ultrasound, 2D), and skin lesion (Image, 2D). Our comprehensive evaluation demonstrates the broad applicability and effectiveness of MED-NCA in various medical imaging contexts, matching the performance of two magnitudes larger UNet models. Additionally, we introduce NCA-VIS, a visualization tool that gives insight into the inference process of MED-NCA and allows users to test its robustness by applying various artifacts. This combination of efficiency, broad applicability, and enhanced interpretability makes MED-NCA a transformative solution for medical image analysis, fostering greater global healthcare equity by making advanced diagnostics accessible in even the most resource-limited environments.

Application and optimization of the U-Net++ model for cerebral artery segmentation based on computed tomographic angiography images.

Kim H, Seo KH, Kim K, Shim J, Lee Y

pubmed logopapersJul 1 2025
Accurate segmentation of cerebral arteries on computed tomography angiography (CTA) images is essential for the diagnosis and management of cerebrovascular diseases, including ischemic stroke. This study implemented a deep learning-based U-Net++ model for cerebral artery segmentation in CTA images, focusing on optimizing pruning levels by analyzing the trade-off between segmentation performance and computational cost. Dual-energy CTA and direct subtraction CTA datasets were utilized to segment the internal carotid and vertebral arteries in close proximity to the bone. We implemented four pruning levels (L1-L4) in the U-Net++ model and evaluated the segmentation performance using accuracy, intersection over union, F1-score, boundary F1-score, and Hausdorff distance. Statistical analyses were conducted to assess the significance of segmentation performance differences across pruning levels. In addition, we measured training and inference times to evaluate the trade-off between segmentation performance and computational efficiency. Applying deep supervision improved segmentation performance across all factors. While the L4 pruning level achieved the highest segmentation performance, L3 significantly reduced training and inference times (by an average of 51.56 % and 22.62 %, respectively), while incurring only a small decrease in segmentation performance (7.08 %) compared to L4. These results suggest that L3 achieves an optimal balance between performance and computational cost. This study demonstrates that pruning levels in U-Net++ models can be optimized to reduce computational cost while maintaining effective segmentation performance. By simplifying deep learning models, this approach can improve the efficiency of cerebrovascular segmentation, contributing to faster and more accurate diagnoses in clinical settings.
Page 73 of 1341333 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.