Sort by:
Page 72 of 1421416 results

Predicting ESWL success for ureteral stones: a radiomics-based machine learning approach.

Yang R, Zhao D, Ye C, Hu M, Qi X, Li Z

pubmed logopapersJul 4 2025
This study aimed to develop and validate a machine learning (ML) model that integrates radiomics and conventional radiological features to predict the success of single-session extracorporeal shock wave lithotripsy (ESWL) for ureteral stones. This retrospective study included 329 patients with ureteral stones who underwent ESWL between October 2022 and June 2024. Patients were randomly divided into a training set (n = 230) and a test set (n = 99) in a 7:3 ratio. Preoperative clinical data and noncontrast CT images were collected, and radiomic features were extracted by outlining the stone's region of interest (ROI). Univariate analysis was used to identify clinical and conventional radiological features related to the success of single-session ESWL. Radiomic features were selected using the least absolute shrinkage and selection operator (LASSO) algorithm to calculate a radiomic score (Rad-score). Five machine learning models (RF, KNN, LR, SVM, AdaBoost) were developed using 10-fold cross-validation. Model performance was assessed using AUC, accuracy, sensitivity, specificity, and F1 score. Calibration and decision curve analyses were used to evaluate model calibration and clinical value. SHAP analysis was conducted to interpret feature importance, and a nomogram was built to improve model interpretability. Ureteral diameter proximal to the stone (UDPS), stone-to-skin distance (SSD), and renal pelvic width (RPW) were identified as significant predictors. Six radiomic features were selected from 1,595 to calculate the Rad-score. The LR model showed the best performance on the test set, with an accuracy of 83.8%, sensitivity of 84.9%, specificity of 82.6%, F1 score of 84.9%, and AUC of 0.888 (95% CI: 0.822-0.949). SHAP analysis indicated that the Rad-score and UDPS were the most influential features. Calibration and decision curve analyses confirmed the model's good calibration and clinical utility. The LR model, integrating radiomics and conventional radiological features, demonstrated strong performance in predicting the success of single-session ESWL for ureteral stones. This approach may assist clinicians in making more accurate treatment decisions. Retrospectively. Not applicable.

Prior knowledge of anatomical relationships supports automatic delineation of clinical target volume for cervical cancer.

Shi J, Mao X, Yang Y, Lu S, Zhang W, Zhao S, He Z, Yan Z, Liang W

pubmed logopapersJul 4 2025
Deep learning has been used for automatic planning of radiotherapy targets, such as inferring the clinical target volume (CTV) for a given new patient. However, previous deep learning methods mainly focus on predicting CTV from CT images without considering the rich prior knowledge. This limits the usability of such methods and prevents them from being generalized to larger clinical scenarios. We propose an automatic CTV delineation method for cervical cancer based on prior knowledge of anatomical relationships. This prior knowledge involves the anatomical position relationship between Organ-at-risk (OAR) and CTV, and the relationship between CTV and psoas muscle. First, our model proposes a novel feature attention module to integrate the relationship between nearby OARs and CTV to improve segmentation accuracy. Second, we propose a width-driven attention network to incorporate the relative positions of psoas muscle and CTV. The effectiveness of our method is verified by conducting a large number of experiments in private datasets. Compared to the state-of-the-art models, our method has obtained the Dice of 81.33%±6.36% and HD95 of 9.39mm±7.12mm, and ASSD of 2.02mm±0.98mm, which has proved the superiority of our method in cervical cancer CTV delineation. Furthermore, experiments on subgroup analysis and multi-center datasets also verify the generalization of our method. Our study can improve the efficiency of automatic CTV delineation and help the implementation of clinical applications.

Novel CAC Dispersion and Density Score to Predict Myocardial Infarction and Cardiovascular Mortality.

Huangfu G, Ihdayhid AR, Kwok S, Konstantopoulos J, Niu K, Lu J, Smallbone H, Figtree GA, Chow CK, Dembo L, Adler B, Hamilton-Craig C, Grieve SM, Chan MTV, Butler C, Tandon V, Nagele P, Woodard PK, Mrkobrada M, Szczeklik W, Aziz YFA, Biccard B, Devereaux PJ, Sheth T, Dwivedi G, Chow BJW

pubmed logopapersJul 4 2025
Coronary artery calcification (CAC) provides robust prediction for major adverse cardiovascular events (MACE), but current techniques disregard plaque distribution and protective effects of high CAC density. We investigated whether a novel CAC-dispersion and density (CAC-DAD) score will exhibit superior prognostic value compared with the Agatston score (AS) for MACE prediction. We conducted a multicenter, retrospective, cross-sectional study of 961 patients (median age, 67 years; 61% male) who underwent cardiac computed tomography for cardiovascular or perioperative risk assessment. Blinded analyzers applied deep learning algorithms to noncontrast scans to calculate the CAC-DAD score, which adjusts for the spatial distribution of CAC and assigns a protective weight factor for lesions with ≥1000 Hounsfield units. Associations were assessed using frailty regression. Over a median follow-up of 30 (30-460) days, 61 patients experienced MACE (nonfatal myocardial infarction or cardiovascular mortality). An elevated CAC-DAD score (≥2050 based on optimal cutoff) captured more MACE than AS ≥400 (74% versus 57%; <i>P</i>=0.002). Univariable analysis revealed that an elevated CAC-DAD score, AS ≥400 and AS ≥100, age, diabetes, hypertension, and statin use predicted MACE. On multivariable analysis, only the CAC-DAD score (hazard ratio, 2.57 [95% CI, 1.43-4.61]; <i>P</i>=0.002), age, statins, and diabetes remained significant. The inclusion of the CAC-DAD score in a predictive model containing demographic factors and AS improved the C statistic from 0.61 to 0.66 (<i>P</i>=0.008). The fully automated CAC-DAD score improves MACE prediction compared with the AS. Patients with a high CAC-DAD score, including those with a low AS, may be at higher risk and warrant intensification of their preventative therapies.

Development of a prediction model by combining tumor diameter and clinical parameters of adrenal incidentaloma.

Iwamoto Y, Kimura T, Morimoto Y, Sugisaki T, Dan K, Iwamoto H, Sanada J, Fushimi Y, Shimoda M, Fujii T, Nakanishi S, Mune T, Kaku K, Kaneto H

pubmed logopapersJul 3 2025
When adrenal incidentalomas are detected, diagnostic procedures are complicated by the need for endocrine-stimulating tests and imaging using various modalities to evaluate whether the tumor is a hormone-producing adrenal tumor. This study aimed to develop a machine-learning-based clinical model that combines computed tomography (CT) imaging and clinical parameters for adrenal tumor classification. This was a retrospective cohort study involving 162 patients who underwent hormone testing for adrenal incidentalomas at our institution. Nominal logistic regression analysis was used to identify the predictive factors for hormone-producing adrenal tumors, and three random forest classification models were developed using clinical and imaging parameters. The study included 55 patients with non-functioning adrenal tumors (NFAT), 44 with primary aldosteronism (PA), 22 with mild autonomous cortisol secretion (MACS), 18 with Cushing's syndrome (CS), and 23 with pheochromocytoma (Pheo). A random forest classification model combining the adrenal tumor diameter on CT, early morning hormone measurements, and several clinical parameters was constructed, and showed high diagnostic accuracy for PA, Pheo, and CS (area under the curve: 0.88, 0.85, and 0.80, respectively). However, sufficient diagnostic accuracy has not yet been achieved for MACS. This model provides a noninvasive and efficient tool for adrenal tumor classification, potentially reducing the need for additional hormonal stimulation tests. However, further validation studies are required to confirm the clinical utility of this method.

A comparative three-dimensional analysis of skeletal and dental changes induced by Herbst and PowerScope appliances in Class II malocclusion treatment: a retrospective cohort study.

Caleme E, Moro A, Mattos C, Miguel J, Batista K, Claret J, Leroux G, Cevidanes L

pubmed logopapersJul 3 2025
Skeletal Class II malocclusion is commonly treated using mandibular advancement appliances during growth. Evaluating the comparative effectiveness of different appliances can help optimize treatment outcomes. This study aimed to compare dental and skeletal outcomes of Class II malocclusion treatment using Herbst and PowerScope appliances in conjunction with fixed orthodontic therapy. This retrospective comparative study included 46 consecutively treated patients in two university clinics: 26 with PowerScope and 20 with Herbst MiniScope. CBCT scans were obtained before and after treatment. Skeletal and dental changes were analyzed using maxillary and mandibular voxel-based regional superimpositions and cranial base registrations, aided by AI-based landmark detection. Measurement bias was minimized through the use of a calibrated, blinded examiner. No patients were excluded from the analysis. Due to the study's retrospective nature, no prospective registration was performed; the institutional review board granted ethical approval. The Herbst group showed greater anterior displacement at B-point and Pogonion than PowerScope (2.4 mm and 2.6 mm, respectively). Both groups exhibited improved maxillomandibular relationships, with PowerScope's SNA angle reduced and Herbst's SNB increased. Vertical skeletal changes were observed at points A, B, and Pog in both groups. Herbst also resulted in less lower incisor proclination and more pronounced distal movement of upper incisors. Both appliances effectively corrected Class II malocclusion. Herbst promoted more pronounced skeletal advancement, while PowerScope induced greater dental compensation. These findings may be generalizable to similarly aged Class II patients in CVM stages 3-4.

A Pan-Organ Vision-Language Model for Generalizable 3D CT Representations.

Beeche C, Kim J, Tavolinejad H, Zhao B, Sharma R, Duda J, Gee J, Dako F, Verma A, Morse C, Hou B, Shen L, Sagreiya H, Davatzikos C, Damrauer S, Ritchie MD, Rader D, Long Q, Chen T, Kahn CE, Chirinos J, Witschey WR

pubmed logopapersJul 3 2025
Generalizable foundation models for computed tomographic (CT) medical imaging data are emerging AI tools anticipated to vastly improve clinical workflow efficiency. However, existing models are typically trained within narrow imaging contexts, including limited anatomical coverage, contrast settings, and clinical indications. These constraints reduce their ability to generalize across the broad spectrum of real-world presentations encountered in volumetric CT imaging data. We introduce Percival, a vision-language foundation model trained on over 400,000 CT volumes and paired radiology reports from more than 50,000 participants enrolled in the Penn Medicine BioBank. Percival employs a dual-encoder architecture with a transformer-based image encoder and a BERT-style language encoder, aligned via symmetric contrastive learning. Percival was validated on over 20,000 participants imaging data encompassing over 100,000 CT volumes. In image-text recall tasks, Percival outperforms models trained on limited anatomical windows. To assess Percival's clinical knowledge, we evaluated the biologic, phenotypic and prognostic relevance using laboratory-wide, phenome-wide association studies and survival analyses, uncovering a rich latent structure aligned with physiological measurements and disease phenotypes.

ComptoNet: a Compton-map guided deep learning framework for multi-scatter estimation in multi-source stationary CT.

Xia Y, Zhang L, Xing Y, Chen Z, Gao H

pubmed logopapersJul 3 2025
Multi-source stationary computed tomography (MSS-CT) offers significant advantages in medical and industrial applications due to its gantryless scan architecture and capability of simultaneous multi-source emission. However, the lack of anti-scatter grid deployment in MSS-CT leads to severe forward and cross scatter contamination, necessitating accurate and efficient scatter correction. In this work, we propose ComptoNet, an innovative decoupled deep learning framework that integrates Compton-scattering physics with deep learning for scatter estimation in MSS-CT. The core innovation lies in the Compton-map, a representation of large-angle Compton scatter signals outside the scan field of view. ComptoNet employs a dual-network architecture: a Conditional Encoder-Decoder Network (CED-Net) guided by reference Compton-maps and spare detector data for cross scatter estimation, and a Frequency U-Net with attention mechanisms for forward scatter correction. Experiments on Monte Carlo-simulated data demonstrate ComptoNet's superior performance, achieving a mean absolute percentage error (MAPE) of $0.84\%$ on scatter estimation. After correction, CT images show nearly artifact-free quality, validating ComptoNet's robustness in mitigating scatter-induced errors across diverse photon counts and phantoms.

Can Whole-Thyroid-Based CT Radiomics Model Achieve the Performance of Lesion-Based Model in Predicting the Thyroid Nodules Malignancy? - A Comparative Study.

Yuan W, Wu J, Mai W, Li H, Li Z

pubmed logopapersJul 3 2025
Machine learning is now extensively implemented in medical imaging for preoperative risk stratification and post-therapeutic outcome assessment, enhancing clinical decision-making. Numerous studies have focused on predicting whether thyroid nodules are benign or malignant using a nodule-based approach, which is time-consuming, inefficient, and overlooks the impact of the peritumoral region. To evaluate the effectiveness of using the whole-thyroid as the region of interest in differentiating between benign and malignant thyroid nodules, exploring the potential application value of the entire thyroid. This study enrolled 1121 patients with thyroid nodules between February 2017 and May 2023. All participants underwent contrast-enhanced CT scans prior to surgical intervention. Radiomics features were extracted from arterial phase images, and feature dimensionality reduction was performed using the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm. Four machine learning models were trained on the selected features within the training cohort and subsequently evaluated on the independent validation cohort. The diagnostic performance of whole-thyroid versus nodule-based radiomics models was compared through receiver operating characteristic (ROC) curve analysis and area under the curve (AUC) metrics. The nodule-based logistic regression model achieved an AUC of 0.81 in the validation set, with sensitivity, specificity, and accuracy of 78.6%, 69.4%, and 75.6%, respectively. The whole-thyroid-based random forest model attained an AUC of 0.80, with sensitivity, specificity, and accuracy of 90.0%, 51.9.%, and 80.1%, respectively. The AUC advantage ratios on the LR, DT, RF, and SVM models are approximately - 2.47%, 0.00%, - 4.76%, and - 4.94%, respectively. The Delong test showed no significant differences among the four machine learning models regarding the region of interest defined by either the thyroid primary lesion or the whole thyroid. There was no significant difference in distinguishing between benign and malignant thyroid nodules using either a nodule-based or whole-thyroid-based strategy for ROI outlining. We hypothesize that the whole-thyroid approach provides enhanced diagnostic capability for detecting papillary thyroid carcinomas (PTCs) with ill-defined margins.

CT-Mamba: A hybrid convolutional State Space Model for low-dose CT denoising.

Li L, Wei W, Yang L, Zhang W, Dong J, Liu Y, Huang H, Zhao W

pubmed logopapersJul 3 2025
Low-dose CT (LDCT) significantly reduces the radiation dose received by patients, however, dose reduction introduces additional noise and artifacts. Currently, denoising methods based on convolutional neural networks (CNNs) face limitations in long-range modeling capabilities, while Transformer-based denoising methods, although capable of powerful long-range modeling, suffer from high computational complexity. Furthermore, the denoised images predicted by deep learning-based techniques inevitably exhibit differences in noise distribution compared to normal-dose CT (NDCT) images, which can also impact the final image quality and diagnostic outcomes. This paper proposes CT-Mamba, a hybrid convolutional State Space Model for LDCT image denoising. The model combines the local feature extraction advantages of CNNs with Mamba's strength in capturing long-range dependencies, enabling it to capture both local details and global context. Additionally, we introduce an innovative spatially coherent Z-shaped scanning scheme to ensure spatial continuity between adjacent pixels in the image. We design a Mamba-driven deep noise power spectrum (NPS) loss function to guide model training, ensuring that the noise texture of the denoised LDCT images closely resembles that of NDCT images, thereby enhancing overall image quality and diagnostic value. Experimental results have demonstrated that CT-Mamba performs excellently in reducing noise in LDCT images, enhancing detail preservation, and optimizing noise texture distribution, and exhibits higher statistical similarity with the radiomics features of NDCT images. The proposed CT-Mamba demonstrates outstanding performance in LDCT denoising and holds promise as a representative approach for applying the Mamba framework to LDCT denoising tasks.

Diagnostic performance of artificial intelligence based on contrast-enhanced computed tomography in pancreatic ductal adenocarcinoma: a systematic review and meta-analysis.

Yan G, Chen X, Wang Y

pubmed logopapersJul 2 2025
This meta-analysis systematically evaluated the diagnostic performance of artificial intelligence (AI) based on contrast-enhanced computed tomography (CECT) in detecting pancreatic ductal adenocarcinoma (PDAC). Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Diagnostic Test Accuracy (PRISMA-DTA) guidelines, a comprehensive literature search was conducted across PubMed, Embase, and Web of Science from inception to March 2025. Bivariate random-effects models pooled sensitivity, specificity, and area under the curve (AUC). Heterogeneity was quantified via I² statistics, with subgroup analyses examining sources of variability, including AI methodologies, model architectures, sample sizes, geographic distributions, control groups and tumor stages. Nineteen studies involving 5,986 patients in internal validation cohorts and 2,069 patients in external validation cohorts were included. AI models demonstrated robust diagnostic accuracy in internal validation, with pooled sensitivity of 0.94 (95% CI 0.89-0.96), specificity of 0.93 (95% CI 0.90-0.96), and AUC of 0.98 (95% CI 0.96-0.99). External validation revealed moderately reduced sensitivity (0.84; 95% CI 0.78-0.89) and AUC (0.94; 95% CI 0.92-0.96), while specificity remained comparable (0.93; 95% CI 0.87-0.96). Substantial heterogeneity (I² > 85%) was observed, predominantly attributed to methodological variations in AI architectures and disparities in cohort sizes. AI demonstrates excellent diagnostic performance for PDAC on CECT, achieving high sensitivity and specificity across validation scenarios. However, its efficacy varies significantly with clinical context and tumor stage. Therefore, prospective multicenter trials that utilize standardized protocols and diverse cohorts, including early-stage tumors and complex benign conditions, are essential to validate the clinical utility of AI.
Page 72 of 1421416 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.