Sort by:
Page 71 of 91903 results

Deep learning reconstruction for improved image quality of ultra-high-resolution brain CT angiography: application in moyamoya disease.

Ma Y, Nakajima S, Fushimi Y, Funaki T, Otani S, Takiya M, Matsuda A, Kozawa S, Fukushima Y, Okuchi S, Sakata A, Yamamoto T, Sakamoto R, Chihara H, Mineharu Y, Arakawa Y, Nakamoto Y

pubmed logopapersMay 29 2025
To investigate vessel delineation and image quality of ultra-high-resolution (UHR) CT angiography (CTA) reconstructed using deep learning reconstruction (DLR) optimised for brain CTA (DLR-brain) in moyamoya disease (MMD), compared with DLR optimised for body CT (DLR-body) and hybrid iterative reconstruction (Hybrid-IR). This retrospective study included 50 patients with suspected or diagnosed MMD who underwent UHR brain CTA. All images were reconstructed using DLR-brain, DLR-body, and Hybrid-IR. Quantitative analysis focussed on moyamoya perforator vessels in the basal ganglia and periventricular anastomosis. For these small vessels, edge sharpness, peak CT number, vessel contrast, full width at half maximum (FWHM), and image noise were measured and compared. Qualitative analysis was performed by visual assessment to compare vessel delineation and image quality. DLR-brain significantly improved edge sharpness, peak CT number, vessel contrast, and FWHM, and significantly reduced image noise compared with DLR-body and Hybrid-IR (P < 0.05). DLR-brain significantly outperformed the other algorithms in the visual assessment (P < 0.001). DLR-brain provided superior visualisation of small intracranial vessels compared with DLR-body and Hybrid-IR in UHR brain CTA.

Manual and automated facial de-identification techniques for patient imaging with preservation of sinonasal anatomy.

Ding AS, Nagururu NV, Seo S, Liu GS, Sahu M, Taylor RH, Creighton FX

pubmed logopapersMay 29 2025
Facial recognition of reconstructed computed tomography (CT) scans poses patient privacy risks, necessitating reliable facial de-identification methods. Current methods obscure sinuses, turbinates, and other anatomy relevant for otolaryngology. We present a facial de-identification method that preserves these structures, along with two automated workflows for large-volume datasets. A total of 20 adult head CTs from the New Mexico Decedent Image Database were included. Using 3D Slicer, a seed-growing technique was performed to label the skin around the face. This label was dilated bidirectionally to form a 6-mm mask that obscures facial features. This technique was then automated using: (1) segmentation propagation that deforms an atlas head CT and corresponding mask to match other scans and (2) a deep learning model (nnU-Net). Accuracy of these methods against manually generated masks was evaluated with Dice scores and modified Hausdorff distances (mHDs). Manual de-identification resulted in facial match rates of 45.0% (zero-fill), 37.5% (deletion), and 32.5% (re-face). Dice scores for automated face masks using segmentation propagation and nnU-Net were 0.667 ± 0.109 and 0.860 ± 0.029, respectively, with mHDs of 4.31 ± 3.04 mm and 1.55 ± 0.71 mm. Match rates after de-identification using segmentation propagation (zero-fill: 42.5%; deletion: 40.0%; re-face: 35.0%) and nnU-Net (zero-fill: 42.5%; deletion: 35.0%; re-face: 30.0%) were comparable to manual masks. We present a simple facial de-identification approach for head CTs, as well as automated methods for large-scale implementation. These techniques show promise for preventing patient identification while preserving underlying sinonasal anatomy, but further studies using live patient photographs are necessary to fully validate its effectiveness.

Estimating Head Motion in Structural MRI Using a Deep Neural Network Trained on Synthetic Artifacts

Charles Bricout, Samira Ebrahimi Kahou, Sylvain Bouix

arxiv logopreprintMay 29 2025
Motion-related artifacts are inevitable in Magnetic Resonance Imaging (MRI) and can bias automated neuroanatomical metrics such as cortical thickness. Manual review cannot objectively quantify motion in anatomical scans, and existing automated approaches often require specialized hardware or rely on unbalanced noisy training data. Here, we train a 3D convolutional neural network to estimate motion severity using only synthetically corrupted volumes. We validate our method with one held-out site from our training cohort and with 14 fully independent datasets, including one with manual ratings, achieving a representative $R^2 = 0.65$ versus manual labels and significant thickness-motion correlations in 12/15 datasets. Furthermore, our predicted motion correlates with subject age in line with prior studies. Our approach generalizes across scanner brands and protocols, enabling objective, scalable motion assessment in structural MRI studies without prospective motion correction.

A combined attention mechanism for brain tumor segmentation of lower-grade glioma in magnetic resonance images.

Hedibi H, Beladgham M, Bouida A

pubmed logopapersMay 29 2025
Low-grade gliomas (LGGs) are among the most problematic brain tumors to reliably segment in FLAIR MRI, and effective delineation of these lesions is critical for clinical diagnosis, treatment planning, and patient monitoring. Nevertheless, conventional U-Net-based approaches usually suffer from the loss of critical structural details owing to repetitive down-sampling, while the encoder features often retain irrelevant information that is not properly utilized by the decoder. To solve these challenges, this paper offers a dual-attention U-shaped design, named ECASE-Unet, which seamlessly integrates Efficient Channel Attention (ECA) and Squeeze-and-Excitation (SE) blocks in both the encoder and decoder stages. By selectively recalibrating channel-wise information, the model increases diagnostically significant regions of interest and reduces noise. Furthermore, dilated convolutions are introduced at the bottleneck layer to capture multi-scale contextual cues without inflating computational complexity, and dropout regularization is systematically applied to prevent overfitting on heterogeneous data. Experimental results on the Kaggle Low-Grade-Glioma dataset suggest that ECASE-Unet greatly outperforms previous segmentation algorithms, reaching a Dice coefficient of 0.9197 and an Intersection over Union (IoU) of 0.8521. Comprehensive ablation studies further reveal that integrating ECA and SE modules delivers complementing benefits, supporting the model's robust efficacy in precisely identifying LGG boundaries. These findings underline the potential of ECASE-Unet to expedite clinical operations and improve patient outcomes. Future work will focus on improving the model's applicability to new MRI modalities and studying the integration of clinical characteristics for a more comprehensive characterization of brain tumors.

Diagnosis of trigeminal neuralgia based on plain skull radiography using convolutional neural network.

Han JH, Ji SY, Kim M, Kwon JE, Park JB, Kang H, Hwang K, Kim CY, Kim T, Jeong HG, Ahn YH, Chung HT

pubmed logopapersMay 29 2025
This study aimed to determine whether trigeminal neuralgia can be diagnosed using convolutional neural networks (CNNs) based on plain X-ray skull images. A labeled dataset of 166 skull images from patients aged over 16 years with trigeminal neuralgia was compiled, alongside a control dataset of 498 images from patients with unruptured intracranial aneurysms. The images were randomly partitioned into training, validation, and test datasets in a 6:2:2 ratio. Classifier performance was assessed using accuracy and the area under the receiver operating characteristic (AUROC) curve. Gradient-weighted class activation mapping was applied to identify regions of interest. External validation was conducted using a dataset obtained from another institution. The CNN achieved an overall accuracy of 87.2%, with sensitivity and specificity of 0.72 and 0.91, respectively, and an AUROC of 0.90 on the test dataset. In most cases, the sphenoid body and clivus were identified as key areas for predicting trigeminal neuralgia. Validation on the external dataset yielded an accuracy of 71.0%, highlighting the potential of deep learning-based models in distinguishing X-ray skull images of patients with trigeminal neuralgia from those of control individuals. Our preliminary results suggest that plain x-ray can be potentially used as an adjunct to conventional MRI, ideally with CISS sequences, to aid in the clinical diagnosis of TN. Further refinement could establish this approach as a valuable screening tool.

Deep Learning CAIPIRINHA-VIBE Improves and Accelerates Head and Neck MRI.

Nitschke LV, Lerchbaumer M, Ulas T, Deppe D, Nickel D, Geisel D, Kubicka F, Wagner M, Walter-Rittel T

pubmed logopapersMay 29 2025
The aim of this study was to evaluate image quality for contrast-enhanced (CE) neck MRI with a deep learning-reconstructed VIBE sequence with acceleration factors (AF) 4 (DL4-VIBE) and 6 (DL6-VIBE). Patients referred for neck MRI were examined in a 3-Tesla scanner in this prospective, single-center study. Four CE fat-saturated (FS) VIBE sequences were acquired in each patient: Star-VIBE (4:01 min), VIBE (2:05 min), DL4-VIBE (0:24 min), DL6-VIBE (0:17 min). Image quality was evaluated by three radiologists with a 5-point Likert scale and included overall image quality, muscle contour delineation, conspicuity of mucosa and pharyngeal musculature, FS uniformity, and motion artifacts. Objective image quality was assessed with signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and quantification of metal artifacts. 68 patients (60.3% male; mean age 57.4±16 years) were included in this study. DL4-VIBE was superior for overall image quality, delineation of muscle contours, differentiation of mucosa and pharyngeal musculature, vascular delineation, and motion artifacts. Notably, DL4-VIBE exhibited exceptional FS uniformity (p<0.001). SNR and CNR were superior for DL4-VIBE compared to all other sequences (p<0.001). Metal artifacts were least pronounced in the standard VIBE, followed by DL4-VIBE (p<0.001). Although DL6-VIBE was inferior to DL4-VIBE, it demonstrated improved FS homogeneity, delineation of pharyngeal mucosa, and CNR compared to Star-VIBE and VIBE. DL4-VIBE significantly improves image quality for CE neck MRI with a fraction of the scan time of conventional sequences.

Standardizing Heterogeneous MRI Series Description Metadata Using Large Language Models.

Kamel PI, Doo FX, Savani D, Kanhere A, Yi PH, Parekh VS

pubmed logopapersMay 29 2025
MRI metadata, particularly free-text series descriptions (SDs) used to identify sequences, are highly heterogeneous due to variable inputs by manufacturers and technologists. This variability poses challenges in correctly identifying series for hanging protocols and dataset curation. The purpose of this study was to evaluate the ability of large language models (LLMs) to automatically classify MRI SDs. We analyzed non-contrast brain MRIs performed between 2016 and 2022 at our institution, identifying all unique SDs in the metadata. A practicing neuroradiologist manually classified the SD text into: "T1," "T2," "T2/FLAIR," "SWI," "DWI," ADC," or "Other." Then, various LLMs, including GPT 3.5 Turbo, GPT-4, GPT-4o, Llama 3 8b, and Llama 3 70b, were asked to classify each SD into one of the sequence categories. Model performances were compared to ground truth classification using area under the curve (AUC) as the primary metric. Additionally, GPT-4o was tasked with generating regular expression templates to match each category. In 2510 MRI brain examinations, there were 1395 unique SDs, with 727/1395 (52.1%) appearing only once, indicating high variability. GPT-4o demonstrated the highest performance, achieving an average AUC of 0.983 ± 0.020 for all series with detailed prompting. GPT models significantly outperformed Llama models, with smaller differences within the GPT family. Regular expression generation was inconsistent, demonstrating an average AUC of 0.774 ± 0.161 for all sequences. Our findings suggest that LLMs are effective for interpreting and standardizing heterogeneous MRI SDs.

Menopausal hormone therapy and the female brain: Leveraging neuroimaging and prescription registry data from the UK Biobank cohort.

Barth C, Galea LAM, Jacobs EG, Lee BH, Westlye LT, de Lange AG

pubmed logopapersMay 29 2025
Menopausal hormone therapy (MHT) is generally thought to be neuroprotective, yet results have been inconsistent. Here, we present a comprehensive study of MHT use and brain characteristics in females from the UK Biobank. 19,846 females with magnetic resonance imaging data were included. Detailed MHT prescription data from primary care records was available for 538. We tested for associations between the brain measures (i.e. gray/white matter brain age, hippocampal volumes, white matter hyperintensity volumes) and MHT user status, age at first and last use, duration of use, formulation, route of administration, dosage, type, and active ingredient. We further tested for the effects of a history of hysterectomy ± bilateral oophorectomy among MHT users and examined associations by APOE ε4 status. Current MHT users, not past users, showed older gray and white matter brain age, with a difference of up to 9 mo, and smaller hippocampal volumes compared to never-users. Longer duration of use and older age at last use post-menopause was associated with older gray and white matter brain age, larger white matter hyperintensity volume, and smaller hippocampal volumes. MHT users with a history of hysterectomy ± bilateral oophorectomy showed <i>younger</i> gray matter brain age relative to MHT users without such history. We found no associations by APOE ε4 status and with other MHT variables. Our results indicate that population-level associations between MHT use and female brain health might vary depending on duration of use and past surgical history. The authors received funding from the Research Council of Norway (LTW: 223273, 249795, 273345, 298646, 300768), the South-Eastern Norway Regional Health Authority (CB: 2023037, 2022103; LTW: 2018076, 2019101), the European Research Council under the European Union's Horizon 2020 research and innovation program (LTW: 802998), the Swiss National Science Foundation (AMGdL: PZ00P3_193658), the Canadian Institutes for Health Research (LAMG: PJT-173554), the Treliving Family Chair in Women's Mental Health at the Centre for Addiction and Mental Health (LAMG), womenmind at the Centre for Addiction and Mental Health (LAMG, BHL), the Ann S. Bowers Women's Brain Health Initiative (EGJ), and the National Institutes of Health (EGJ: AG063843).

RNN-AHF Framework: Enhancing Multi-focal Nature of Hypoxic Ischemic Encephalopathy Lesion Region in MRI Image Using Optimized Rough Neural Network Weight and Anti-Homomorphic Filter.

Thangeswari M, Muthucumaraswamy R, Anitha K, Shanker NR

pubmed logopapersMay 29 2025
Image enhancement of the Hypoxic-Ischemic Encephalopathy (HIE) lesion region in neonatal brain MR images is a challenging task due to the diffuse (i.e., multi-focal) nature, small size, and low contrast of the lesions. Classifying the stages of HIE is also difficult because of the unclear boundaries and edges of the lesions, which are dispersedthroughout the brain. Moreover, unclear boundaries and edges are due to chemical shifts, partial volume artifacts, and motion artifacts. Further, voxels may reflect signals from adjacent tissues. Existing algorithms perform poorly in HIE lesion enhancement due to artifacts, voxels, and the diffuse nature of the lesion. In this paper, we propose a Rough Neural Network and Anti-Homomorphic Filter (RNN-AHF) framework for the enhancement of the HIE lesion region. The RNN-AHF framework reduces the pixel dimensionality of the feature space, eliminates unnecessary pixels, and preserves essential pixels for lesion enhancement. The RNN efficiently learns and identifies pixel patterns and facilitates adaptive enhancement based on different weights in the neural network. The proposed RNN-AHF framework operates using optimized neural weights and an optimized training function. The hybridization of optimized weights and the training function enhances the lesion region with high contrast while preserving the boundaries and edges. The proposed RNN-AHF framework achieves a lesion image enhancement and classification accuracy of approximately 93.5%, which is better than traditional algorithms.

Single Domain Generalization for Alzheimer's Detection from 3D MRIs with Pseudo-Morphological Augmentations and Contrastive Learning

Zobia Batool, Huseyin Ozkan, Erchan Aptoula

arxiv logopreprintMay 28 2025
Although Alzheimer's disease detection via MRIs has advanced significantly thanks to contemporary deep learning models, challenges such as class imbalance, protocol variations, and limited dataset diversity often hinder their generalization capacity. To address this issue, this article focuses on the single domain generalization setting, where given the data of one domain, a model is designed and developed with maximal performance w.r.t. an unseen domain of distinct distribution. Since brain morphology is known to play a crucial role in Alzheimer's diagnosis, we propose the use of learnable pseudo-morphological modules aimed at producing shape-aware, anatomically meaningful class-specific augmentations in combination with a supervised contrastive learning module to extract robust class-specific representations. Experiments conducted across three datasets show improved performance and generalization capacity, especially under class imbalance and imaging protocol variations. The source code will be made available upon acceptance at https://github.com/zobia111/SDG-Alzheimer.
Page 71 of 91903 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.