Manual and automated facial de-identification techniques for patient imaging with preservation of sinonasal anatomy.

Authors

Ding AS,Nagururu NV,Seo S,Liu GS,Sahu M,Taylor RH,Creighton FX

Affiliations (3)

  • Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD, 21205, USA. [email protected].
  • Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD, 21205, USA.
  • Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA.

Abstract

Facial recognition of reconstructed computed tomography (CT) scans poses patient privacy risks, necessitating reliable facial de-identification methods. Current methods obscure sinuses, turbinates, and other anatomy relevant for otolaryngology. We present a facial de-identification method that preserves these structures, along with two automated workflows for large-volume datasets. A total of 20 adult head CTs from the New Mexico Decedent Image Database were included. Using 3D Slicer, a seed-growing technique was performed to label the skin around the face. This label was dilated bidirectionally to form a 6-mm mask that obscures facial features. This technique was then automated using: (1) segmentation propagation that deforms an atlas head CT and corresponding mask to match other scans and (2) a deep learning model (nnU-Net). Accuracy of these methods against manually generated masks was evaluated with Dice scores and modified Hausdorff distances (mHDs). Manual de-identification resulted in facial match rates of 45.0% (zero-fill), 37.5% (deletion), and 32.5% (re-face). Dice scores for automated face masks using segmentation propagation and nnU-Net were 0.667 ± 0.109 and 0.860 ± 0.029, respectively, with mHDs of 4.31 ± 3.04 mm and 1.55 ± 0.71 mm. Match rates after de-identification using segmentation propagation (zero-fill: 42.5%; deletion: 40.0%; re-face: 35.0%) and nnU-Net (zero-fill: 42.5%; deletion: 35.0%; re-face: 30.0%) were comparable to manual masks. We present a simple facial de-identification approach for head CTs, as well as automated methods for large-scale implementation. These techniques show promise for preventing patient identification while preserving underlying sinonasal anatomy, but further studies using live patient photographs are necessary to fully validate its effectiveness.

Topics

Journal Article
Get Started

Upload your X-ray image and get interpretation.

Upload now →

Disclaimer: X-ray Interpreter's AI-generated results are for informational purposes only and not a substitute for professional medical advice. Always consult a healthcare professional for medical diagnosis and treatment.