Sort by:
Page 70 of 94933 results

Radiomics-based machine learning atherosclerotic carotid artery disease in ultrasound: systematic review with meta-analysis of RQS.

Vacca S, Scicolone R, Pisu F, Cau R, Yang Q, Annoni A, Pontone G, Costa F, Paraskevas KI, Nicolaides A, Suri JS, Saba L

pubmed logopapersJun 9 2025
Stroke, a leading global cause of mortality and neurological disability, is often associated with atherosclerotic carotid artery disease. Distinguishing between symptomatic and asymptomatic carotid artery disease is crucial for appropriate treatment decisions. Radiomics, a quantitative image analysis technique, and machine learning (ML) have emerged as promising tools in Ultrasound (US) imaging, potentially providing a helpful tool in the screening of such lesions. Pubmed, Web of Science and Scopus databases were searched for relevant studies published from January 2005 to May 2023. The Radiomics Quality Score (RQS) was used to assess methodological quality of studies included in the review. The Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) assessed the risk of bias. Sensitivity, specificity, and logarithmic diagnostic odds ratio (logDOR) meta-analyses have been conducted, alongside an influence analysis. RQS assessed methodological quality, revealing an overall low score and consistent findings with other radiology domains. QUADAS-2 indicated an overall low risk, except for two studies with high bias. The meta-analysis demonstrated that radiomics-based ML models for predicting culprit plaques on US had a satisfactory performance, with a sensitivity of 0.84 and specificity of 0.82. The logDOR analysis confirmed the positive results, yielding a pooled logDOR of 3.54. The summary ROC curve provided an AUC of 0.887. Radiomics combined with ML provide high sensitivity and low false positive rate for carotid plaque vulnerability assessment on US. However, current evidence is not definitive, given the low overall study quality and high inter-study heterogeneity. High quality, prospective studies are needed to confirm the potential of these promising techniques.

optiGAN: A Deep Learning-Based Alternative to Optical Photon Tracking in Python-Based GATE (10+).

Mummaneni G, Trigila C, Krah N, Sarrut D, Roncali E

pubmed logopapersJun 9 2025
To accelerate optical photon transport simulations in the GATE medical physics framework using a Generative Adversarial Network (GAN), while ensuring high modeling accuracy. Traditionally, detailed optical Monte Carlo methods have been the gold standard for modeling photon interactions in detectors, but their high computational cost remains a challenge. This study explores the integration of optiGAN, a Generative Adversarial Network (GAN) model into GATE 10, the new Python-based version of the GATE medical physics simulation framework released in November 2024.
Approach: The goal of optiGAN is to accelerate optical photon transport simulations while maintaining modelling accuracy. The optiGAN model, based on a GAN architecture, was integrated into GATE 10 as a computationally efficient alternative to traditional optical Monte Carlo simulations. To ensure consistency, optical photon transport modules were implemented in GATE 10 and validated against GATE v9.3 under identical simulation conditions. Subsequently, simulations using full Monte Carlo tracking in GATE 10 were compared to those using GATE 10-optiGAN.
Main results: Validation studies confirmed that GATE 10 produces results consistent with GATE v9.3. Simulations using GATE 10-optiGAN showed over 92% similarity to Monte Carlo-based GATE 10 results, based on the Jensen-Shannon distance across multiple photon transport parameters. optiGAN successfully captured multimodal distributions of photon position, direction, and energy at the photodetector face. Simulation time analysis revealed a reduction of approximately 50% in execution time with GATE 10-optiGAN compared to full Monte Carlo simulations.
Significance: The study confirms both the fidelity of optical photon transport modeling in GATE 10 and the effective integration of deep learning-based acceleration through optiGAN. This advancement enables large-scale, high-fidelity optical simulations with significantly reduced computational cost, supporting broader applications in medical imaging and detector design.

APTOS-2024 challenge report: Generation of synthetic 3D OCT images from fundus photographs

Bowen Liu, Weiyi Zhang, Peranut Chotcomwongse, Xiaolan Chen, Ruoyu Chen, Pawin Pakaymaskul, Niracha Arjkongharn, Nattaporn Vongsa, Xuelian Cheng, Zongyuan Ge, Kun Huang, Xiaohui Li, Yiru Duan, Zhenbang Wang, BaoYe Xie, Qiang Chen, Huazhu Fu, Michael A. Mahr, Jiaqi Qu, Wangyiyang Chen, Shiye Wang, Yubo Tan, Yongjie Li, Mingguang He, Danli Shi, Paisan Ruamviboonsuk

arxiv logopreprintJun 9 2025
Optical Coherence Tomography (OCT) provides high-resolution, 3D, and non-invasive visualization of retinal layers in vivo, serving as a critical tool for lesion localization and disease diagnosis. However, its widespread adoption is limited by equipment costs and the need for specialized operators. In comparison, 2D color fundus photography offers faster acquisition and greater accessibility with less dependence on expensive devices. Although generative artificial intelligence has demonstrated promising results in medical image synthesis, translating 2D fundus images into 3D OCT images presents unique challenges due to inherent differences in data dimensionality and biological information between modalities. To advance generative models in the fundus-to-3D-OCT setting, the Asia Pacific Tele-Ophthalmology Society (APTOS-2024) organized a challenge titled Artificial Intelligence-based OCT Generation from Fundus Images. This paper details the challenge framework (referred to as APTOS-2024 Challenge), including: the benchmark dataset, evaluation methodology featuring two fidelity metrics-image-based distance (pixel-level OCT B-scan similarity) and video-based distance (semantic-level volumetric consistency), and analysis of top-performing solutions. The challenge attracted 342 participating teams, with 42 preliminary submissions and 9 finalists. Leading methodologies incorporated innovations in hybrid data preprocessing or augmentation (cross-modality collaborative paradigms), pre-training on external ophthalmic imaging datasets, integration of vision foundation models, and model architecture improvement. The APTOS-2024 Challenge is the first benchmark demonstrating the feasibility of fundus-to-3D-OCT synthesis as a potential solution for improving ophthalmic care accessibility in under-resourced healthcare settings, while helping to expedite medical research and clinical applications.

Improving Patient Communication by Simplifying AI-Generated Dental Radiology Reports With ChatGPT: Comparative Study.

Stephan D, Bertsch AS, Schumacher S, Puladi B, Burwinkel M, Al-Nawas B, Kämmerer PW, Thiem DG

pubmed logopapersJun 9 2025
Medical reports, particularly radiology findings, are often written for professional communication, making them difficult for patients to understand. This communication barrier can reduce patient engagement and lead to misinterpretation. Artificial intelligence (AI), especially large language models such as ChatGPT, offers new opportunities for simplifying medical documentation to improve patient comprehension. We aimed to evaluate whether AI-generated radiology reports simplified by ChatGPT improve patient understanding, readability, and communication quality compared to original AI-generated reports. In total, 3 versions of radiology reports were created using ChatGPT: an original AI-generated version (text 1), a patient-friendly, simplified version (text 2), and a further simplified and accessibility-optimized version (text 3). A total of 300 patients (n=100, 33.3% per group), excluding patients with medical education, were randomly assigned to review one text version and complete a standardized questionnaire. Readability was assessed using the Flesch Reading Ease (FRE) score and LIX indices. Both simplified texts showed significantly higher readability scores (text 1: FRE score=51.1; text 2: FRE score=55.0; and text 3: FRE score=56.4; P<.001) and lower LIX scores, indicating enhanced clarity. Text 3 had the shortest sentences, had the fewest long words, and scored best on all patient-rated dimensions. Questionnaire results revealed significantly higher ratings for texts 2 and 3 across clarity (P<.001), tone (P<.001), structure, and patient engagement. For example, patients rated the ability to understand findings without help highest for text 3 (mean 1.5, SD 0.7) and lowest for text 1 (mean 3.1, SD 1.4). Both simplified texts significantly improved patients' ability to prepare for clinical conversations and promoted shared decision-making. AI-generated simplification of radiology reports significantly enhances patient comprehension and engagement. These findings highlight the potential of ChatGPT as a tool to improve patient-centered communication. While promising, future research should focus on ensuring clinical accuracy and exploring applications across diverse patient populations to support equitable and effective integration of AI in health care communication.

Addressing Limited Generalizability in Artificial Intelligence-Based Brain Aneurysm Detection for Computed Tomography Angiography: Development of an Externally Validated Artificial Intelligence Screening Platform.

Pettersson SD, Filo J, Liaw P, Skrzypkowska P, Klepinowski T, Szmuda T, Fodor TB, Ramirez-Velandia F, Zieliński P, Chang YM, Taussky P, Ogilvy CS

pubmed logopapersJun 9 2025
Brain aneurysm detection models, both in the literature and in industry, continue to lack generalizability during external validation, limiting clinical adoption. This challenge is largely due to extensive exclusion criteria during training data selection. The authors developed the first model to achieve generalizability using novel methodological approaches. Computed tomography angiography (CTA) scans from 2004 to 2023 at the study institution were used for model training, including untreated unruptured intracranial aneurysms without extensive cerebrovascular disease. External validation used digital subtraction angiography-verified CTAs from an international center, while prospective validation occurred at the internal institution over 9 months. A public web platform was created for further model validation. A total of 2194 CTA scans were used for this study. One thousand five hundred eighty-seven patients and 1920 aneurysms with a mean size of 5.3 ± 3.7 mm were included in the training cohort. The mean age of the patients was 69.7 ± 14.9 years, and 1203 (75.8%) were female. The model achieved a training Dice score of 0.88 and a validation Dice score of 0.76. Prospective internal validation on 304 scans yielded a lesion-level (LL) sensitivity of 82.5% (95% CI: 75.5-87.9) and specificity of 89.6 (95% CI: 84.5-93.2). External validation on 303 scans demonstrated an on-par LL sensitivity and specificity of 83.5% (95% CI: 75.1-89.4) and 92.9% (95% CI: 88.8-95.6), respectively. Radiologist LL sensitivity from the external center was 84.5% (95% CI: 76.2-90.2), and 87.5% of the missed aneurysms were detected by the model. The authors developed the first publicly testable artificial intelligence model for aneurysm detection on CTA scans, demonstrating generalizability and state-of-the-art performance in external validation. The model addresses key limitations of previous efforts and enables broader validation through a web-based platform.

A Narrative Review on Large AI Models in Lung Cancer Screening, Diagnosis, and Treatment Planning

Jiachen Zhong, Yiting Wang, Di Zhu, Ziwei Wang

arxiv logopreprintJun 8 2025
Lung cancer remains one of the most prevalent and fatal diseases worldwide, demanding accurate and timely diagnosis and treatment. Recent advancements in large AI models have significantly enhanced medical image understanding and clinical decision-making. This review systematically surveys the state-of-the-art in applying large AI models to lung cancer screening, diagnosis, prognosis, and treatment. We categorize existing models into modality-specific encoders, encoder-decoder frameworks, and joint encoder architectures, highlighting key examples such as CLIP, BLIP, Flamingo, BioViL-T, and GLoRIA. We further examine their performance in multimodal learning tasks using benchmark datasets like LIDC-IDRI, NLST, and MIMIC-CXR. Applications span pulmonary nodule detection, gene mutation prediction, multi-omics integration, and personalized treatment planning, with emerging evidence of clinical deployment and validation. Finally, we discuss current limitations in generalizability, interpretability, and regulatory compliance, proposing future directions for building scalable, explainable, and clinically integrated AI systems. Our review underscores the transformative potential of large AI models to personalize and optimize lung cancer care.

Diagnostic accuracy of radiomics in risk stratification of gastrointestinal stromal tumors: A systematic review and meta-analysis.

Salimi M, Mohammadi H, Ghahramani S, Nemati M, Ashari A, Imani A, Imani MH

pubmed logopapersJun 7 2025
This systematic review and meta-analysis aimed to assess the diagnostic accuracy of radiomics in risk stratification of gastrointestinal stromal tumors (GISTs). It focused on evaluating radiomic models as a non-invasive tool in clinical practice. A comprehensive search was conducted across PubMed, Web of Science, EMBASE, Scopus, and Cochrane Library up to May 17, 2025. Studies involving preoperative imaging and radiomics-based risk stratification of GISTs were included. Quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool and Radiomics Quality Score (RQS). Pooled sensitivity, specificity, and area under the curve (AUC) were calculated using bivariate random-effects models. Meta-regression and subgroup analyses were performed to explore heterogeneity. A total of 29 studies were included, with 22 (76 %) based on computed tomography scans, while 2 (7 %) were based on endoscopic ultrasound, 3 (10 %) on magnetic resonance imaging, and 2 (7 %) on ultrasound. Of these, 18 studies provided sufficient data for meta-analysis. Pooled sensitivity, specificity, and AUC for radiomics-based GIST risk stratification were 0.84, 0.86, and 0.90 for training cohorts, and 0.84, 0.80, and 0.89 for validation cohorts. QUADAS-2 indicated some bias due to insufficient pre-specified thresholds. The mean RQS score was 13.14 ± 3.19. Radiomics holds promise for non-invasive GIST risk stratification, particularly with advanced imaging techniques. However, radiomic models are still in the early stages of clinical adoption. Further research is needed to improve diagnostic accuracy and validate their role alongside conventional methods like biopsy or surgery.

NeXtBrain: Combining local and global feature learning for brain tumor classification.

Pacal I, Akhan O, Deveci RT, Deveci M

pubmed logopapersJun 7 2025
The accurate and timely diagnosis of brain tumors is of paramount clinical significance for effective treatment planning and improved patient outcomes. While deep learning has advanced medical image analysis, concurrently achieving high classification accuracy, robust generalization, and computational efficiency remains a formidable challenge. This is often due to the difficulty in optimally capturing both fine-grained local tumor features and their broader global contextual cues without incurring substantial computational costs. This paper introduces NeXtBrain, a novel hybrid architecture meticulously designed to overcome these limitations. NeXtBrain's core innovations, the NeXt Convolutional Block (NCB) and the NeXt Transformer Block (NTB), synergistically enhance feature learning: NCB leverages Multi-Head Convolutional Attention and a SwiGLU-based MLP to precisely extract subtle local tumor morphologies and detailed textures, while NTB integrates self-attention with convolutional attention and a SwiGLU MLP to effectively model long-range spatial dependencies and global contextual relationships, crucial for differentiating complex tumor characteristics. Evaluated on two publicly available benchmark datasets, Figshare and Kaggle, NeXtBrain was rigorously compared against 17 state-of-the-art (SOTA) models. On Figshare, it achieved 99.78 % accuracy and a 99.77 % F1-score. On Kaggle, it attained 99.78 % accuracy and a 99.81 % F1-score, surpassing leading SOTA ViT, CNN, and hybrid models. Critically, NeXtBrain demonstrates exceptional computational efficiency, achieving these SOTA results with only 23.91 million parameters, requiring just 10.32 GFLOPs, and exhibiting a rapid inference time of 0.007 ms. This efficiency allows it to outperform significantly larger models such as DeiT3-Base with 85.82 M parameters, Swin-Base with 86.75 M parameters in both accuracy and computational demand.

Lack of children in public medical imaging data points to growing age bias in biomedical AI

Hua, S. B. Z., Heller, N., He, P., Towbin, A. J., Chen, I., Lu, A., Erdman, L.

medrxiv logopreprintJun 7 2025
Artificial intelligence (AI) is rapidly transforming healthcare, but its benefits are not reaching all patients equally. Children remain overlooked with only 17% of FDA-approved medical AI devices labeled for pediatric use. In this work, we demonstrate that this exclusion may stem from a fundamental data gap. Our systematic review of 181 public medical imaging datasets reveals that children represent just under 1% of available data, while the majority of machine learning imaging conference papers we surveyed utilized publicly available data for methods development. Much like systematic biases of other kinds in model development, past studies have demonstrated the manner in which pediatric representation in data used for models intended for the pediatric population is essential for model performance in that population. We add to these findings, showing that adult-trained chest radiograph models exhibit significant age bias when applied to pediatric populations, with higher false positive rates in younger children. This work underscores the urgent need for increased pediatric representation in publicly accessible medical datasets. We provide actionable recommendations for researchers, policymakers, and data curators to address this age equity gap and ensure AI benefits patients of all ages. 1-2 sentence summaryOur analysis reveals a critical healthcare age disparity: children represent less than 1% of public medical imaging datasets. This gap in representation leads to biased predictions across medical image foundation models, with the youngest patients facing the highest risk of misdiagnosis.

Predicting infarct outcomes after extended time window thrombectomy in large vessel occlusion using knowledge guided deep learning.

Dai L, Yuan L, Zhang H, Sun Z, Jiang J, Li Z, Li Y, Zha Y

pubmed logopapersJun 6 2025
Predicting the final infarct after an extended time window mechanical thrombectomy (MT) is beneficial for treatment planning in acute ischemic stroke (AIS). By introducing guidance from prior knowledge, this study aims to improve the accuracy of the deep learning model for post-MT infarct prediction using pre-MT brain perfusion data. This retrospective study collected CT perfusion data at admission for AIS patients receiving MT over 6 hours after symptom onset, from January 2020 to December 2024, across three centers. Infarct on post-MT diffusion weighted imaging served as ground truth. Five Swin transformer based models were developed for post-MT infarct segmentation using pre-MT CT perfusion parameter maps: BaselineNet served as the basic model for comparative analysis, CollateralFlowNet included a collateral circulation evaluation score, InfarctProbabilityNet incorporated infarct probability mapping, ArterialTerritoryNet was guided by artery territory mapping, and UnifiedNet combined all prior knowledge sources. Model performance was evaluated using the Dice coefficient and intersection over union (IoU). A total of 221 patients with AIS were included (65.2% women) with a median age of 73 years. Baseline ischemic core based on CT perfusion threshold achieved a Dice coefficient of 0.50 and IoU of 0.33. BaselineNet improved to a Dice coefficient of 0.69 and IoU of 0.53. Compared with BaselineNet, models incorporating medical knowledge demonstrated higher performance: CollateralFlowNet (Dice coefficient 0.72, IoU 0.56), InfarctProbabilityNet (Dice coefficient 0.74, IoU 0.58), ArterialTerritoryNet (Dice coefficient 0.75, IoU 0.60), and UnifiedNet (Dice coefficient 0.82, IoU 0.71) (all P<0.05). In this study, integrating medical knowledge into deep learning models enhanced the accuracy of infarct predictions in AIS patients undergoing extended time window MT.
Page 70 of 94933 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.