Sort by:
Page 70 of 1431421 results

Multi-Attention Stacked Ensemble for Lung Cancer Detection in CT Scans

Uzzal Saha, Surya Prakash

arxiv logopreprintJul 27 2025
In this work, we address the challenge of binary lung nodule classification (benign vs malignant) using CT images by proposing a multi-level attention stacked ensemble of deep neural networks. Three pretrained backbones - EfficientNet V2 S, MobileViT XXS, and DenseNet201 - are each adapted with a custom classification head tailored to 96 x 96 pixel inputs. A two-stage attention mechanism learns both model-wise and class-wise importance scores from concatenated logits, and a lightweight meta-learner refines the final prediction. To mitigate class imbalance and improve generalization, we employ dynamic focal loss with empirically calculated class weights, MixUp augmentation during training, and test-time augmentation at inference. Experiments on the LIDC-IDRI dataset demonstrate exceptional performance, achieving 98.09 accuracy and 0.9961 AUC, representing a 35 percent reduction in error rate compared to state-of-the-art methods. The model exhibits balanced performance across sensitivity (98.73) and specificity (98.96), with particularly strong results on challenging cases where radiologist disagreement was high. Statistical significance testing confirms the robustness of these improvements across multiple experimental runs. Our approach can serve as a robust, automated aid for radiologists in lung cancer screening.

Artificial intelligence-assisted compressed sensing CINE enhances the workflow of cardiac magnetic resonance in challenging patients.

Wang H, Schmieder A, Watkins M, Wang P, Mitchell J, Qamer SZ, Lanza G

pubmed logopapersJul 26 2025
A key cardiac magnetic resonance (CMR) challenge is breath-holding duration, difficult for cardiac patients. To evaluate whether artificial intelligence-assisted compressed sensing CINE (AI-CS-CINE) reduces image acquisition time of CMR compared to conventional CINE (C-CINE). Cardio-oncology patients (<i>n</i> = 60) and healthy volunteers (<i>n</i> = 29) underwent sequential C-CINE and AI-CS-CINE with a 1.5-T scanner. Acquisition time, visual image quality assessment, and biventricular metrics (end-diastolic volume, end-systolic volume, stroke volume, ejection fraction, left ventricular mass, and wall thickness) were analyzed and compared between C-CINE and AI-CS-CINE with Bland-Altman analysis, and calculation of intraclass coefficient (ICC). In 89 participants (58.5 ± 16.8 years, 42 males, 47 females), total AI-CS-CINE acquisition and reconstruction time (37 seconds) was 84% faster than C-CINE (238 seconds). C-CINE required repeats in 23% (20/89) of cases (approximately 8 minutes lost), while AI-CS-CINE only needed one repeat (1%; 2 seconds lost). AI-CS-CINE had slightly lower contrast but preserved structural clarity. Bland-Altman plots and ICC (0.73 ≤ <i>r</i> ≤ 0.98) showed strong agreement for left ventricle (LV) and right ventricle (RV) metrics, including those in the cardiac amyloidosis subgroup (<i>n</i> = 31). AI-CS-CINE enabled faster, easier imaging in patients with claustrophobia, dyspnea, arrhythmias, or restlessness. Motion-artifacted C-CINE images were reliably interpreted from AI-CS-CINE. AI-CS-CINE accelerated CMR image acquisition and reconstruction, preserved anatomical detail, and diminished impact of patient-related motion. Quantitative AI-CS-CINE metrics agreed closely with C-CINE in cardio-oncology patients, including the cardiac amyloidosis cohort, as well as healthy volunteers regardless of left and right ventricular size and function. AI-CS-CINE significantly enhanced CMR workflow, particularly in challenging cases. The strong analytical concordance underscores reliability and robustness of AI-CS-CINE as a valuable tool.

Artificial intelligence-powered software outperforms interventional cardiologists in assessment of IVUS-based stent optimization.

Rubio PM, Garcia-Garcia HM, Galo J, Chaturvedi A, Case BC, Mintz GS, Ben-Dor I, Hashim H, Waksman R

pubmed logopapersJul 26 2025
Optimal stent deployment assessed by intravascular ultrasound (IVUS) is associated with improved outcomes after percutaneous coronary intervention (PCI). However, IVUS remains underutilized due to its time-consuming analysis and reliance on operator expertise. AVVIGO™+, an FDA-approved artificial intelligence (AI) software, offers automated lesion assessment, but its performance for stent evaluation has not been thoroughly investigated. To assess whether an artificial intelligence-powered software (AVVIGO™+) provides a superior evaluation of IVUS-based stent expansion index (%Stent expansion = Minimum Stent Area (MSA) / Distal reference lumen area) and geographic miss (i.e. >50 % plaque burden - PB - at stent edges) compared to the current gold standard method performed by interventional cardiologists (IC), defined as frame-by-frame visual assessment by interventional cardiologists, selecting the MSA and the reference frame with the largest lumen area within 5 mm of the stent edge, following expert consensus. This retrospective study included 60 patients (47,997 IVUS frames) who underwent IVUS guided PCI, independently analyzed by IC and AVVIGO™+. Assessments included minimum stent area (MSA), stent expansion index, and PB at proximal and distal reference segments. For expansion, a threshold of 80 % was used to define suboptimal results. The time required for expansion analysis was recorded for both methods. Concordance, absolute and relative differences were evaluated. AVVIGO™ + consistently identified lower mean expansion (70.3 %) vs. IC (91.2 %), (p < 0.0001), primarily due to detecting frames with smaller MSA values (5.94 vs. 7.19 mm<sup>2</sup>, p = 0.0053). This led to 25 discordant cases in which AVVIGO™ + reported suboptimal expansion while IC classified the result as adequate. The analysis time was significantly shorter with AVVIGO™ + (0.76 ± 0.39 min) vs IC (1.89 ± 0.62 min) (p < 0.0001), representing a 59.7 % reduction. For geographic miss, AVVIGO™ + reported higher PB than IC at both distal (51.8 % vs. 43.0 %, p < 0.0001) and proximal (50.0 % vs. 43.0 %, p = 0.0083) segments. When applying the 50 % PB threshold, AVVIGO™ + identified PB ≥50 % not seen by IC in 12 cases (6 distal, 6 proximal). AVVIGO™ + demonstrated improved detection of suboptimal stent expansion and geographic miss compared to interventional cardiologists, while also significantly reducing analysis time. These findings suggest that AI-based platforms may offer a more reliable and efficient approach to IVUS-guided stent optimization, with potential to enhance consistency in clinical practice.

Synomaly noise and multi-stage diffusion: A novel approach for unsupervised anomaly detection in medical images.

Bi Y, Huang L, Clarenbach R, Ghotbi R, Karlas A, Navab N, Jiang Z

pubmed logopapersJul 26 2025
Anomaly detection in medical imaging plays a crucial role in identifying pathological regions across various imaging modalities, such as brain MRI, liver CT, and carotid ultrasound (US). However, training fully supervised segmentation models is often hindered by the scarcity of expert annotations and the complexity of diverse anatomical structures. To address these issues, we propose a novel unsupervised anomaly detection framework based on a diffusion model that incorporates a synthetic anomaly (Synomaly) noise function and a multi-stage diffusion process. Synomaly noise introduces synthetic anomalies into healthy images during training, allowing the model to effectively learn anomaly removal. The multi-stage diffusion process is introduced to progressively denoise images, preserving fine details while improving the quality of anomaly-free reconstructions. The generated high-fidelity counterfactual healthy images can further enhance the interpretability of the segmentation models, as well as provide a reliable baseline for evaluating the extent of anomalies and supporting clinical decision-making. Notably, the unsupervised anomaly detection model is trained purely on healthy images, eliminating the need for anomalous training samples and pixel-level annotations. We validate the proposed approach on brain MRI, liver CT datasets, and carotid US. The experimental results demonstrate that the proposed framework outperforms existing state-of-the-art unsupervised anomaly detection methods, achieving performance comparable to fully supervised segmentation models in the US dataset. Ablation studies further highlight the contributions of Synomaly noise and the multi-stage diffusion process in improving anomaly segmentation. These findings underscore the potential of our approach as a robust and annotation-efficient alternative for medical anomaly detection. Code:https://github.com/yuan-12138/Synomaly.

CLT-MambaSeg: An integrated model of Convolution, Linear Transformer and Multiscale Mamba for medical image segmentation.

Uppal D, Prakash S

pubmed logopapersJul 26 2025
Recent advances in deep learning have significantly enhanced the performance of medical image segmentation. However, maintaining a balanced integration of feature localization, global context modeling, and computational efficiency remains a critical research challenge. Convolutional Neural Networks (CNNs) effectively capture fine-grained local features through hierarchical convolutions; however, they often struggle to model long-range dependencies due to their limited receptive field. Transformers address this limitation by leveraging self-attention mechanisms to capture global context, but they are computationally intensive and require large-scale data for effective training. The Mamba architecture has emerged as a promising approach, effectively capturing long-range dependencies while maintaining low computational overhead and high segmentation accuracy. Based on this, we propose a method named CLT-MambaSeg that integrates Convolution, Linear Transformer, and Multiscale Mamba architectures to capture local features, model global context, and improve computational efficiency for medical image segmentation. It utilizes a convolution-based Spatial Representation Extraction (SREx) module to capture intricate spatial relationships and dependencies. Further, it comprises a Mamba Vision Linear Transformer (MVLTrans) module to capture multiscale context, spatial and sequential dependencies, and enhanced global context. In addition, to address the problem of limited data, we propose a novel Memory-Guided Augmentation Generative Adversarial Network (MeGA-GAN) that generates synthetic realistic images to further enhance the segmentation performance. We conduct extensive experiments and ablation studies on the five benchmark datasets, namely CVC-ClinicDB, Breast UltraSound Images (BUSI), PH2, and two datasets from the International Skin Imaging Collaboration (ISIC), namely ISIC-2016 and ISIC-2017. Experimental results demonstrate the efficacy of the proposed CLT-MambaSeg compared to other state-of-the-art methods.

Quantification of hepatic steatosis on post-contrast computed tomography scans using artificial intelligence tools.

Derstine BA, Holcombe SA, Chen VL, Pai MP, Sullivan JA, Wang SC, Su GL

pubmed logopapersJul 26 2025
Early detection of steatotic liver disease (SLD) is critically important. In clinical practice, hepatic steatosis is frequently diagnosed using computed tomography (CT) performed for unrelated clinical indications. An equation for estimating magnetic resonance proton density fat fraction (MR-PDFF) using liver attenuation on non-contrast CT exists, but no equivalent equation exists for post-contrast CT. We sought to (1) determine whether an automated workflow can accurately measure liver attenuation, (2) validate previously identified optimal thresholds for liver or liver-spleen attenuation in post-contrast studies, and (3) develop a method for estimating MR-PDFF (FF) on post-contrast CT. The fully automated TotalSegmentator 'total' machine learning model was used to segment 3D liver and spleen from non-contrast and post-contrast CT scans. Mean attenuation was extracted from liver (L) and spleen (S) volumes and from manually placed regions of interest (ROIs) in multi-phase CT scans of two cohorts: derivation (n = 1740) and external validation (n = 1044). Non-linear regression was used to determine the optimal coefficients for three phase-specific (arterial, venous, delayed) increasing exponential decay equations relating post-contrast L to non-contrast L. MR-PDFF was estimated from non-contrast CT and used as the reference standard. The mean attenuation for manual ROIs versus automated volumes were nearly perfectly correlated for both liver and spleen (r > .96, p < .001). For moderate-to-severe steatosis (L < 40 HU), the density of the liver (L) alone was a better classifier than either liver-spleen difference (L-S) or ratio (L/S) on post-contrast CTs. Fat fraction calculated using a corrected post-contrast liver attenuation measure agreed with non-contrast FF > 15% in both the derivation and external validation cohort, with AUROC between 0.92 and 0.97 on arterial, venous, and delayed phases. Automated volumetric mean attenuation of liver and spleen can be used instead of manually placed ROIs for liver fat assessments. Liver attenuation alone in post-contrast phases can be used to assess the presence of moderate-to-severe hepatic steatosis. Correction equations for liver attenuation on post-contrast phase CT scans enable reasonable quantification of liver steatosis, providing potential opportunities for utilizing clinical scans to develop large scale screening or studies in SLD.

FaRMamba: Frequency-based learning and Reconstruction aided Mamba for Medical Segmentation

Ze Rong, ZiYue Zhao, Zhaoxin Wang, Lei Ma

arxiv logopreprintJul 26 2025
Accurate medical image segmentation remains challenging due to blurred lesion boundaries (LBA), loss of high-frequency details (LHD), and difficulty in modeling long-range anatomical structures (DC-LRSS). Vision Mamba employs one-dimensional causal state-space recurrence to efficiently model global dependencies, thereby substantially mitigating DC-LRSS. However, its patch tokenization and 1D serialization disrupt local pixel adjacency and impose a low-pass filtering effect, resulting in Local High-frequency Information Capture Deficiency (LHICD) and two-dimensional Spatial Structure Degradation (2D-SSD), which in turn exacerbate LBA and LHD. In this work, we propose FaRMamba, a novel extension that explicitly addresses LHICD and 2D-SSD through two complementary modules. A Multi-Scale Frequency Transform Module (MSFM) restores attenuated high-frequency cues by isolating and reconstructing multi-band spectra via wavelet, cosine, and Fourier transforms. A Self-Supervised Reconstruction Auxiliary Encoder (SSRAE) enforces pixel-level reconstruction on the shared Mamba encoder to recover full 2D spatial correlations, enhancing both fine textures and global context. Extensive evaluations on CAMUS echocardiography, MRI-based Mouse-cochlea, and Kvasir-Seg endoscopy demonstrate that FaRMamba consistently outperforms competitive CNN-Transformer hybrids and existing Mamba variants, delivering superior boundary accuracy, detail preservation, and global coherence without prohibitive computational overhead. This work provides a flexible frequency-aware framework for future segmentation models that directly mitigates core challenges in medical imaging.

AI-driven preclinical disease risk assessment using imaging in UK biobank.

Seletkov D, Starck S, Mueller TT, Zhang Y, Steinhelfer L, Rueckert D, Braren R

pubmed logopapersJul 26 2025
Identifying disease risk and detecting disease before clinical symptoms appear are essential for early intervention and improving patient outcomes. In this context, the integration of medical imaging in a clinical workflow offers a unique advantage by capturing detailed structural and functional information. Unlike non-image data, such as lifestyle, sociodemographic, or prior medical conditions, which often rely on self-reported information susceptible to recall biases and subjective perceptions, imaging offers more objective and reliable insights. Although the use of medical imaging in artificial intelligence (AI)-driven risk assessment is growing, its full potential remains underutilized. In this work, we demonstrate how imaging can be integrated into routine screening workflows, in particular by taking advantage of neck-to-knee whole-body magnetic resonance imaging (MRI) data available in the large prospective study UK Biobank. Our analysis focuses on three-year risk assessment for a broad spectrum of diseases, including cardiovascular, digestive, metabolic, inflammatory, degenerative, and oncologic conditions. We evaluate AI-based pipelines for processing whole-body MRI and demonstrate that using image-derived radiomics features provides the best prediction performance, interpretability, and integration capability with non-image data.

A triple pronged approach for ulcerative colitis severity classification using multimodal, meta, and transformer based learning.

Ahmed MN, Neogi D, Kabir MR, Rahman S, Momen S, Mohammed N

pubmed logopapersJul 26 2025
Ulcerative colitis (UC) is a chronic inflammatory disorder necessitating precise severity stratification to facilitate optimal therapeutic interventions. This study harnesses a triple-pronged deep learning methodology-including multimodal inference pipelines that eliminate domain-specific training, few-shot meta-learning, and Vision Transformer (ViT)-based ensembling-to classify UC severity within the HyperKvasir dataset. We systematically evaluate multiple vision transformer architectures, discovering that a Swin-Base model achieves an accuracy of 90%, while a soft-voting ensemble of diverse ViT backbones boosts performance to 93%. In parallel, we leverage multimodal pre-trained frameworks (e.g., CLIP, BLIP, FLAVA) integrated with conventional machine learning algorithms, yielding an accuracy of 83%. To address limited annotated data, we deploy few-shot meta-learning approaches (e.g., Matching Networks), attaining 83% accuracy in a 5-shot context. Furthermore, interpretability is enhanced via SHapley Additive exPlanations (SHAP), which interpret both local and global model behaviors, thereby fostering clinical trust in the model's inferences. These findings underscore the potential of contemporary representation learning and ensemble strategies for robust UC severity classification, highlighting the pivotal role of model transparency in facilitating medical image analysis.

PerioDet: Large-Scale Panoramic Radiograph Benchmark for Clinical-Oriented Apical Periodontitis Detection

Xiaocheng Fang, Jieyi Cai, Huanyu Liu, Chengju Zhou, Minhua Lu, Bingzhi Chen

arxiv logopreprintJul 25 2025
Apical periodontitis is a prevalent oral pathology that presents significant public health challenges. Despite advances in automated diagnostic systems across various medical fields, the development of Computer-Aided Diagnosis (CAD) applications for apical periodontitis is still constrained by the lack of a large-scale, high-quality annotated dataset. To address this issue, we release a large-scale panoramic radiograph benchmark called "PerioXrays", comprising 3,673 images and 5,662 meticulously annotated instances of apical periodontitis. To the best of our knowledge, this is the first benchmark dataset for automated apical periodontitis diagnosis. This paper further proposes a clinical-oriented apical periodontitis detection (PerioDet) paradigm, which jointly incorporates Background-Denoising Attention (BDA) and IoU-Dynamic Calibration (IDC) mechanisms to address the challenges posed by background noise and small targets in automated detection. Extensive experiments on the PerioXrays dataset demonstrate the superiority of PerioDet in advancing automated apical periodontitis detection. Additionally, a well-designed human-computer collaborative experiment underscores the clinical applicability of our method as an auxiliary diagnostic tool for professional dentists.
Page 70 of 1431421 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.