Sort by:
Page 7 of 41408 results

Assessment of Robustness of MRI Radiomic Features in the Abdomen: Impact of Deep Learning Reconstruction and Accelerated Acquisition.

Zhong J, Xing Y, Hu Y, Liu X, Dai S, Ding D, Lu J, Yang J, Song Y, Lu M, Nickel D, Lu W, Zhang H, Yao W

pubmed logopapersJun 25 2025
The objective of this study is to investigate the impact of deep learning reconstruction and accelerated acquisition on reproducibility and variability of radiomic features in abdominal MRI. Seventeen volunteers were prospectively included to undergo abdominal MRI on a 3-T scanner for axial T2-weighted, axial T2-weighted fat-suppressed, and coronal T2-weighted sequences. Each sequence was scanned for four times using clinical reference acquisition with standard reconstruction, clinical reference acquisition with deep learning reconstruction, accelerated acquisition with standard reconstruction, and accelerated acquisition with deep learning reconstruction, respectively. The regions of interest were drawn for ten anatomical sites with rigid registrations. Ninety-three radiomic features were extracted via PyRadiomics after z-score normalization. The reproducibility was evaluated using clinical reference acquisition with standard reconstruction as reference by intraclass correlation coefficient (ICC) and concordance correlation coefficient (CCC). The variability among four scans was assessed by coefficient of variation (CV) and quartile coefficient of dispersion (QCD). Our study found that the median (first and third quartile) of overall ICC and CCC values were 0.451 (0.305, 0.583) and 0.450 (0.304, 0.582). The overall percentage of radiomic features with ICC > 0.90 and CCC > 0.90 was 8.1% and 8.1%, and was considered acceptable. The median (first and third quartile) of overall CV and QCD values was 9.4% (4.9%, 17.2%) and 4.9% (2.5%, 9.7%). The overall percentage of radiomic features with CV < 10% and QCD < 10% was 51.9% and 75.0%, and was considered acceptable. Without respect to clinical significance, deep learning reconstruction and accelerated acquisition led to a poor reproducibility of radiomic features, but more than a half of the radiomic features varied within an acceptable range.

Few-Shot Learning for Prostate Cancer Detection on MRI: Comparative Analysis with Radiologists' Performance.

Yamagishi Y, Baba Y, Suzuki J, Okada Y, Kanao K, Oyama M

pubmed logopapersJun 25 2025
Deep-learning models for prostate cancer detection typically require large datasets, limiting clinical applicability across institutions due to domain shift issues. This study aimed to develop a few-shot learning deep-learning model for prostate cancer detection on multiparametric MRI that requires minimal training data and to compare its diagnostic performance with experienced radiologists. In this retrospective study, we used 99 cases (80 positive, 19 negative) of biopsy-confirmed prostate cancer (2017-2022), with 20 cases for training, 5 for validation, and 74 for testing. A 2D transformer model was trained on T2-weighted, diffusion-weighted, and apparent diffusion coefficient map images. Model predictions were compared with two radiologists using Matthews correlation coefficient (MCC) and F1 score, with 95% confidence intervals (CIs) calculated via bootstrap method. The model achieved an MCC of 0.297 (95% CI: 0.095-0.474) and F1 score of 0.707 (95% CI: 0.598-0.847). Radiologist 1 had an MCC of 0.276 (95% CI: 0.054-0.484) and F1 score of 0.741; Radiologist 2 had an MCC of 0.504 (95% CI: 0.289-0.703) and F1 score of 0.871, showing that the model performance was comparable to Radiologist 1. External validation on the Prostate158 dataset revealed that ImageNet pretraining substantially improved model performance, increasing study-level ROC-AUC from 0.464 to 0.636 and study-level PR-AUC from 0.637 to 0.773 across all architectures. Our findings demonstrate that few-shot deep-learning models can achieve clinically relevant performance when using pretrained transformer architectures, offering a promising approach to address domain shift challenges across institutions.

AI-based CT assessment of sarcopenia in borderline resectable pancreatic Cancer: A narrative review of clinical and technical perspectives.

Gehin W, Lambert A, Bibault JE

pubmed logopapersJun 25 2025
Sarcopenia, defined as the progressive loss of skeletal muscle mass and function, has been associated with poor prognosis in patients with pancreatic cancer, particularly those with borderline resectable pancreatic cancer (BRPC). Although body composition can be extracted from routine CT imaging, sarcopenia assessment remains underused in clinical practice. Recent advances in artificial intelligence (AI) offer the potential to automate and standardize this process, but their clinical translation remains limited. This narrative review aims to critically evaluate (1) the clinical impact of CT-defined sarcopenia in BRPC, and (2) the performance and maturity of AI-based methods for automated muscle and fat segmentation on CT images. A dual-axis literature search was conducted to identify clinical studies assessing the prognostic role of sarcopenia in BRPC, and technical studies developing AI-based segmentation models for body composition analysis. Structured data extraction was applied to 13 clinical and 71 technical studies. A PRISMA-inspired flow diagram was included to ensure methodological transparency. Sarcopenia was consistently associated with worse survival and treatment tolerance in BRPC, yet clinical definitions and cut-offs varied widely. AI models-mostly 2D U-Nets trained on L3-level CT slices-achieved high segmentation accuracy (mean DSC >0.93), but external validation and standardization were often lacking. CT-based AI assessment of sarcopenia holds promise for improving patient stratification in BRPC. However, its clinical adoption will require standardization, integration into decision-support frameworks, and prospective validation across diverse populations.

Diagnostic Performance of Radiomics for Differentiating Intrahepatic Cholangiocarcinoma from Hepatocellular Carcinoma: A Systematic Review and Meta-analysis.

Wang D, Sun L

pubmed logopapersJun 25 2025
Differentiating intrahepatic cholangiocarcinoma (ICC) from hepatocellular carcinoma (HCC) is essential for selecting the most effective treatment strategies. However, traditional imaging modalities and serum biomarkers often lack sufficient specificity. Radiomics, a sophisticated image analysis approach that derives quantitative data from medical imaging, has emerged as a promising non-invasive tool. To systematically review and meta-analyze the radiomics diagnostic accuracy in differentiating ICC from HCC. PubMed, EMBASE, and Web of Science databases were systematically searched through January 24, 2025. Studies evaluating radiomics models for distinguishing ICC from HCC were included. Assessing the quality of included studies was done by using Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) and METhodological RadiomICs Score tools. Pooled sensitivity, specificity, and area under the curve (AUC) were calculated using a bivariate random-effects model. Subgroup and publication bias analyses were also performed. 12 studies with 2541 patients were included, with 14 validation cohorts entered into meta-analysis. The pooled sensitivity and specificity of radiomics models were 0.82 (95% CI: 0.76-0.86) and 0.90 (95% CI: 0.85-0.93), respectively, with an AUC of 0.88 (95% CI: 0.85-0.91). Subgroup analyses revealed variations based on segmentation method, software used, and sample size, though not all differences were statistically significant. Publication bias was not detected. Radiomics demonstrates high diagnostic accuracy in distinguishing ICC from HCC and offers a non-invasive adjunct to conventional diagnostics. Further prospective, multicenter studies with standardized workflows are needed to enhance clinical applicability and reproducibility.

[Practical artificial intelligence for urology : Technical principles, current application and future implementation of AI in practice].

Rodler S, Hügelmann K, von Knobloch HC, Weiss ML, Buck L, Kohler J, Fabian A, Jarczyk J, Nuhn P

pubmed logopapersJun 24 2025
Artificial intelligence (AI) is a disruptive technology that is currently finding widespread application after having long been confined to the domain of specialists. In urology, in particular, new fields of application are continuously emerging, which are being studied both in preclinical basic research and in clinical applications. Potential applications include image recognition in the operating room or interpreting images from radiology and pathology, the automatic measurement of urinary stones and radiotherapy. Certain medical devices, particularly in the field of AI-based predictive biomarkers, have already been incorporated into international guidelines. In addition, AI is playing an increasingly more important role in administrative tasks and is expected to lead to enormous changes, especially in the outpatient sector. For urologists, it is becoming increasingly more important to engage with this technology, to pursue appropriate training and therefore to optimally implement AI into the treatment of patients and in the management of their practices or hospitals.

Machine learning-based construction and validation of an radiomics model for predicting ISUP grading in prostate cancer: a multicenter radiomics study based on [68Ga]Ga-PSMA PET/CT.

Zhang H, Jiang X, Yang G, Tang Y, Qi L, Chen M, Hu S, Gao X, Zhang M, Chen S, Cai Y

pubmed logopapersJun 24 2025
The International Society of Urological Pathology (ISUP) grading of prostate cancer (PCa) is a crucial factor in the management and treatment planning for PCa patients. An accurate and non-invasive assessment of the ISUP grading group could significantly improve biopsy decisions and treatment planning. The use of PSMA-PET/CT radiomics for predicting ISUP has not been widely studied. The aim of this study is to investigate the role of <sup>68</sup>Ga-PSMA PET/CT radiomics in predicting the ISUP grading of primary PCa. This study included 415 PCa patients who underwent <sup>68</sup>Ga-PSMA PET/CT scans before prostate biopsy or radical prostatectomy. Patients were from three centers: Xiangya Hospital, Central South University (252 cases), Qilu Hospital of Shandong University (External Validation 1, 108 cases), and Qingdao University Medical College (External Validation 2, 55 cases). Xiangya Hospital cases were split into training and testing groups (1:1 ratio), with the other centers serving as external validation groups. Feature selection was performed using Minimum Redundancy Maximum Relevance (mRMR) and Least Absolute Shrinkage and Selection Operator (LASSO) algorithms. Eight machine learning classifiers were trained and tested with ten-fold cross-validation. Sensitivity, specificity, and AUC were calculated for each model. Additionally, we combined the radiomic features with maximum Standardized Uptake Value (SUVmax) and prostate-specific antigen (PSA) to create prediction models and tested the corresponding performances. The best-performing model in the Xiangya Hospital training cohort achieved an AUC of 0.868 (sensitivity 72.7%, specificity 96.0%). Similar trends were seen in the testing cohort and external validation centers (AUCs: 0.860, 0.827, and 0.812). After incorporating PSA and SUVmax, a more robust model was developed, achieving an AUC of 0.892 (sensitivity 77.9%, specificity 96.0%) in the training group. This study established and validated a radiomics model based on <sup>68</sup>Ga-PSMA PET/CT, offering an accurate, non-invasive method for predicting ISUP grades in prostate cancer. A multicenter design with external validation ensured the model's robustness and broad applicability. This is the largest study to date on PSMA radiomics for predicting ISUP grades. Notably, integrating SUVmax and PSA metrics with radiomic features significantly improved prediction accuracy, providing new insights and tools for personalized diagnosis and treatment.

Preoperative Assessment of Lymph Node Metastasis in Rectal Cancer Using Deep Learning: Investigating the Utility of Various MRI Sequences.

Zhao J, Zheng P, Xu T, Feng Q, Liu S, Hao Y, Wang M, Zhang C, Xu J

pubmed logopapersJun 24 2025
This study aimed to develop a deep learning (DL) model based on three-dimensional multi-parametric magnetic resonance imaging (mpMRI) for preoperative assessment of lymph node metastasis (LNM) in rectal cancer (RC) and to investigate the contribution of different MRI sequences. A total of 613 eligible patients with RC from four medical centres who underwent preoperative mpMRI were retrospectively enrolled and randomly assigned to training (n = 372), validation (n = 106), internal test (n = 88) and external test (n = 47) cohorts. A multi-parametric multi-scale EfficientNet (MMENet) was designed to effectively extract LNM-related features from mpMR for preoperative LNM assessment. Its performance was compared with other DL models and radiologists using metrics of area under the receiver operating curve (AUC), accuracy (ACC), sensitivity, specificity and average precision with 95% confidence interval (CI). To investigate the utility of various MRI sequences, the performances of the mono-parametric model and the MMENet with different sequences combinations as input were compared. The MMENet using a combination of T2WI, DWI and DCE sequence achieved an AUC of 0.808 (95% CI 0.720-0.897) with an ACC of 71.6% (95% CI 62.3-81.0) in the internal test cohort and an AUC of 0.782 (95% CI 0.636-0.925) with an ACC of 76.6% (95% CI 64.6-88.6) in the external test cohort, outperforming the mono-parametric model, the MMENet with other sequences combinations and the radiologists. The MMENet, leveraging a combination of T2WI, DWI and DCE sequences, can accurately assess LNM in RC preoperatively and holds great promise for automated evaluation of LNM in clinical practice.

Validation of a Pretrained Artificial Intelligence Model for Pancreatic Cancer Detection on Diagnosis and Prediagnosis Computed Tomography Scans.

Degand L, Abi-Nader C, Bône A, Vetil R, Placido D, Chmura P, Rohé MM, De Masi F, Brunak S

pubmed logopapersJun 24 2025
To evaluate PANCANAI, a previously developed AI model for pancreatic cancer (PC) detection, on a longitudinal cohort of patients. In particular, aiming for PC detection on scans acquired before histopathologic diagnosis was assessed. The model has been previously trained to predict PC suspicion on 2134 portal venous CTs. In this study, the algorithm was evaluated on a retrospective cohort of Danish patients with biopsy-confirmed PC and with CT scans acquired between 2006 and 2016. The sensitivity was measured, and bootstrapping was performed to provide median and 95% CI. The study included 1083 PC patients (mean age: 69 y ± 11, 575 men). CT scans were divided into 2 groups: (1) concurrent diagnosis (CD): 1022 CT scans acquired within 2 months around histopathologic diagnosis, and (2) prediagnosis (PD): 198 CT scans acquired before histopathologic diagnosis (median 7 months before diagnosis). The sensitivity was 91.8% (938 of 1022; 95% CI: 89.9-93.5) and 68.7% (137 of 198; 95% CI: 62.1-75.3) on the CD and PD groups, respectively. Sensitivity on CT scans acquired 1 year or more before diagnosis was 53.9% (36 of 67; 95% CI: 41.8-65.7). Sensitivity on CT scans acquired at stage I was 82.9% (29 of 35; 95% CI: 68.6-94.3). PANCANAI showed high sensitivity for automatic PC detection on a large retrospective cohort of biopsy-confirmed patients. PC suspicion was detected in more than half of the CT scans that were acquired at least a year before histopathologic diagnosis.

DeepSeek-assisted LI-RADS classification: AI-driven precision in hepatocellular carcinoma diagnosis.

Zhang J, Liu J, Guo M, Zhang X, Xiao W, Chen F

pubmed logopapersJun 24 2025
The clinical utility of the DeepSeek-V3 (DSV3) model in enhancing the accuracy of Liver Imaging Reporting and Data System (LI-RADS, LR) classification remains underexplored. This study aimed to evaluate the diagnostic performance of DSV3 in LR classifications compared to radiologists with varying levels of experience and to assess its potential as a decision-support tool in clinical practice. A dual-phase retrospective-prospective study analyzed 426 liver lesions (300 retrospective, 126 prospective) in high-risk HCC patients who underwent Magnetic Resonance Imaging (MRI) or Computed Tomography (CT). Three radiologists (one junior, two seniors) independently classified lesions using LR v2018 criteria, while DSV3 analyzed unstructured radiology reports to generate corresponding classifications. In the prospective cohort, DSV3 processed inputs in both Chinese and English to evaluate language impact. Performance was compared using chi-square test or Fisher's exact test, with pathology as the gold standard. In the retrospective cohort, DSV3 significantly outperformed junior radiologists in diagnostically challenging categories: LR-3 (17.8% vs. 39.7%, p<0.05), LR-4 (80.4% vs. 46.2%, p<0.05), and LR-5 (86.2% vs. 66.7%, p<0.05), while showing comparable accuracy in LR-1 (90.8% vs. 88.7%), LR-2 (11.9% vs. 25.6%), and LR-M (79.5% vs. 62.1%) classifications (all p>0.05). Prospective validation confirmed these findings, with DSV3 demonstrating superior performance for LR-3 (13.3% vs. 60.0%), LR-4 (93.3% vs. 66.7%), and LR-5 (93.5% vs. 67.7%) compared to junior radiologists (all p<0.05). Notably, DSV3 achieved diagnostic parity with senior radiologists across all categories (p>0.05) and maintained consistent performance between Chinese and English inputs. The DSV3 model effectively improves diagnostic accuracy of LR-3 to LR-5 classifications among junior radiologists . Its language-independent performance and ability to match senior-level expertise suggest strong potential for clinical implementation to standardize HCC diagnosis and optimize treatment decisions.

ReCoGNet: Recurrent Context-Guided Network for 3D MRI Prostate Segmentation

Ahmad Mustafa, Reza Rastegar, Ghassan AlRegib

arxiv logopreprintJun 24 2025
Prostate gland segmentation from T2-weighted MRI is a critical yet challenging task in clinical prostate cancer assessment. While deep learning-based methods have significantly advanced automated segmentation, most conventional approaches-particularly 2D convolutional neural networks (CNNs)-fail to leverage inter-slice anatomical continuity, limiting their accuracy and robustness. Fully 3D models offer improved spatial coherence but require large amounts of annotated data, which is often impractical in clinical settings. To address these limitations, we propose a hybrid architecture that models MRI sequences as spatiotemporal data. Our method uses a deep, pretrained DeepLabV3 backbone to extract high-level semantic features from each MRI slice and a recurrent convolutional head, built with ConvLSTM layers, to integrate information across slices while preserving spatial structure. This combination enables context-aware segmentation with improved consistency, particularly in data-limited and noisy imaging conditions. We evaluate our method on the PROMISE12 benchmark under both clean and contrast-degraded test settings. Compared to state-of-the-art 2D and 3D segmentation models, our approach demonstrates superior performance in terms of precision, recall, Intersection over Union (IoU), and Dice Similarity Coefficient (DSC), highlighting its potential for robust clinical deployment.
Page 7 of 41408 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.