Sort by:
Page 7 of 73727 results

Policy to Assist Iteratively Local Segmentation: Optimising Modality and Location Selection for Prostate Cancer Localisation

Xiangcen Wu, Shaheer U. Saeed, Yipei Wang, Ester Bonmati Coll, Yipeng Hu

arxiv logopreprintAug 5 2025
Radiologists often mix medical image reading strategies, including inspection of individual modalities and local image regions, using information at different locations from different images independently as well as concurrently. In this paper, we propose a recommend system to assist machine learning-based segmentation models, by suggesting appropriate image portions along with the best modality, such that prostate cancer segmentation performance can be maximised. Our approach trains a policy network that assists tumor localisation, by recommending both the optimal imaging modality and the specific sections of interest for review. During training, a pre-trained segmentation network mimics radiologist inspection on individual or variable combinations of these imaging modalities and their sections - selected by the policy network. Taking the locally segmented regions as an input for the next step, this dynamic decision making process iterates until all cancers are best localised. We validate our method using a data set of 1325 labelled multiparametric MRI images from prostate cancer patients, demonstrating its potential to improve annotation efficiency and segmentation accuracy, especially when challenging pathology is present. Experimental results show that our approach can surpass standard segmentation networks. Perhaps more interestingly, our trained agent independently developed its own optimal strategy, which may or may not be consistent with current radiologist guidelines such as PI-RADS. This observation also suggests a promising interactive application, in which the proposed policy networks assist human radiologists.

Real-time 3D US-CT fusion-based semi-automatic puncture robot system: clinical evaluation.

Nakayama M, Zhang B, Kuromatsu R, Nakano M, Noda Y, Kawaguchi T, Li Q, Maekawa Y, Fujie MG, Sugano S

pubmed logopapersAug 5 2025
Conventional systems supporting percutaneous radiofrequency ablation (PRFA) have faced difficulties in ensuring safe and accurate puncture due to issues inherent to the medical images used and organ displacement caused by patients' respiration. To address this problem, this study proposes a semi-automatic puncture robot system that integrates real-time ultrasound (US) images with computed tomography (CT) images. The purpose of this paper is to evaluate the system's usefulness through a pilot clinical experiment involving participants. For the clinical experiment using the proposed system, an improved U-net model based on fivefold cross-validation was constructed. Following the workflow of the proposed system, the model was trained using US images acquired from patients with robotic arms. The average Dice coefficient for the entire validation dataset was confirmed to be 0.87. Therefore, the model was implemented in the robotic system and applied to clinical experiment. A clinical experiment was conducted using the robotic system equipped with the developed AI model on five adult male and female participants. The centroid distances between the point clouds from each modality were evaluated in the 3D US-CT fusion process, assuming the blood vessel centerline represents the overall structural position. The results of the centroid distances showed a minimum value of 0.38 mm, a maximum value of 4.81 mm, and an average of 1.97 mm. Although the five participants had different CP classifications and the derived US images exhibited individual variability, all centroid distances satisfied the ablation margin of 5.00 mm considered in PRFA, suggesting the potential accuracy and utility of the robotic system for puncture navigation. Additionally, the results suggested the potential generalization performance of the AI model trained with data acquired according to the robotic system's workflow.

Innovative machine learning approach for liver fibrosis and disease severity evaluation in MAFLD patients using MRI fat content analysis.

Hou M, Zhu Y, Zhou H, Zhou S, Zhang J, Zhang Y, Liu X

pubmed logopapersAug 5 2025
This study employed machine learning models to quantitatively analyze liver fat content from MRI images for the evaluation of liver fibrosis and disease severity in patients with metabolic dysfunction-associated fatty liver disease (MAFLD). A total of 26 confirmed MAFLD cases, along with MRI image sequences obtained from public repositories, were included to perform a comprehensive assessment. Radiomics features-such as contrast, correlation, homogeneity, energy, and entropy-were extracted and used to construct a random forest classification model with optimized hyperparameters. The model achieved outstanding performance, with an accuracy of 96.8%, sensitivity of 95.7%, specificity of 97.8%, and an F1-score of 96.8%, demonstrating its strong capability in accurately evaluating the degree of liver fibrosis and overall disease severity in MAFLD patients. The integration of machine learning with MRI-based analysis offers a promising approach to enhancing clinical decision-making and guiding treatment strategies, underscoring the potential of advanced technologies to improve diagnostic precision and disease management in MAFLD.

Evaluating the Predictive Value of Preoperative MRI for Erectile Dysfunction Following Radical Prostatectomy

Gideon N. L. Rouwendaal, Daniël Boeke, Inge L. Cox, Henk G. van der Poel, Margriet C. van Dijk-de Haan, Regina G. H. Beets-Tan, Thierry N. Boellaard, Wilson Silva

arxiv logopreprintAug 5 2025
Accurate preoperative prediction of erectile dysfunction (ED) is important for counseling patients undergoing radical prostatectomy. While clinical features are established predictors, the added value of preoperative MRI remains underexplored. We investigate whether MRI provides additional predictive value for ED at 12 months post-surgery, evaluating four modeling strategies: (1) a clinical-only baseline, representing current state-of-the-art; (2) classical models using handcrafted anatomical features derived from MRI; (3) deep learning models trained directly on MRI slices; and (4) multimodal fusion of imaging and clinical inputs. Imaging-based models (maximum AUC 0.569) slightly outperformed handcrafted anatomical approaches (AUC 0.554) but fell short of the clinical baseline (AUC 0.663). Fusion models offered marginal gains (AUC 0.586) but did not exceed clinical-only performance. SHAP analysis confirmed that clinical features contributed most to predictive performance. Saliency maps from the best-performing imaging model suggested a predominant focus on anatomically plausible regions, such as the prostate and neurovascular bundles. While MRI-based models did not improve predictive performance over clinical features, our findings suggest that they try to capture patterns in relevant anatomical structures and may complement clinical predictors in future multimodal approaches.

Early prediction of proton therapy dose distributions and DVHs for hepatocellular carcinoma using contour-based CNN models from diagnostic CT and MRI.

Rachi T, Tochinai T

pubmed logopapersAug 4 2025
Proton therapy is commonly used for treating hepatocellular carcinoma (HCC); however, its feasibility can be challenging to assess in large tumors or those adjacent to critical organs at risk (OARs), which are typically assessed only after planning computed tomography (CT) acquisition. This study aimed to predict proton dose distributions using diagnostic CT (dCT) and diagnostic MRI (dMRI) with a convolutional neural network (CNN), enabling early treatment feasibility assessments. Dose distributions and dose-volume histograms (DVHs) were calculated for 118 patients with HCC using intensity-modulated proton therapy (IMPT) and passive proton therapy. A CPU-based CNN model was used to predict DVHs and 3D dose distributions from diagnostic images. Prediction accuracy was evaluated using mean absolute error (MAE), mean squared error (MSE), peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and gamma passing rate with a 3 mm/3% criterion. The predicted DVHs and dose distributions showed high agreement with actual values. MAE remained below 3.0%, with passive techniques achieving 1.2-1.8%. MSE was below 0.004 in all cases. PSNR ranged from 24 to 28 dB, and SSIM exceeded 0.94 in most conditions. Gamma passing rates averaged 82-83% for IMPT and 92-93% for passive techniques. The model achieved comparable accuracy when using dMRI and dCT. This study demonstrates that early dose distribution prediction from diagnostic imaging is feasible and accurate using a lightweight CNN model. Despite anatomical variability between diagnostic and planning images, this approach provides timely insights into treatment feasibility, potentially supporting insurance pre-authorization, reducing unnecessary imaging, and optimizing clinical workflows for HCC proton therapy.

Multimodal deep learning model for prognostic prediction in cervical cancer receiving definitive radiotherapy: a multi-center study.

Wang W, Yang G, Liu Y, Wei L, Xu X, Zhang C, Pan Z, Liang Y, Yang B, Qiu J, Zhang F, Hou X, Hu K, Liang X

pubmed logopapersAug 4 2025
For patients with locally advanced cervical cancer (LACC), precise survival prediction models could guide personalized treatment. We developed and validated CerviPro, a deep learning-based multimodal prognostic model, to predict disease-free survival (DFS) in 1018 patients with LACC receiving definitive radiotherapy. The model integrates pre- and post-treatment CT imaging, handcrafted radiomic features, and clinical variables. CerviPro demonstrated robust predictive performance in the internal validation cohort (C-index 0.81), and external validation cohorts (C-index 0.70&0.66), significantly stratifying patients into distinct high- and low-risk DFS groups. Multimodal feature fusion consistently outperformed models based on single feature categories (clinical data, imaging, or radiomics alone), highlighting the synergistic value of integrating diverse data sources. By integrating multimodal data to predict DFS and recurrence risk, CerviPro provides a clinically valuable prognostic tool for LACC, offering the potential to guide personalized treatment strategies.

Combined nomogram for differentiating adrenal pheochromocytoma from large-diameter lipid-poor adenoma using multiphase CT radiomics and clinico-radiological features.

Shan Z, Zhang X, Zhang Y, Wang S, Wang J, Shi X, Li L, Li Z, Yang L, Liu H, Li W, Yang J, Yang L

pubmed logopapersAug 4 2025
Adrenal incidentalomas (AIs) are predominantly adrenal adenomas (80%), with a smaller proportion (7%) being pheochromocytomas(PHEO). Adenomas are typically non-functional tumors managed through observation or medication, with some cases requiring surgical removal, which is generally safe. In contrast, PHEO secrete catecholamines, causing severe blood pressure fluctuations, making surgical resection the only treatment option. Without adequate preoperative preparation, perioperative mortality risk is significantly high.A specialized adrenal CT scanning protocol is recommended to differentiate between these tumor types. However, distinguishing patients with similar washout characteristics remains challenging, and concerns about efficiency, cost, and risk limit its feasibility. Recently, radiomics has demonstrated efficacy in identifying molecular-level differences in tumor cells, including adrenal tumors. This study develops a combined nomogram model, integrating key clinical-radiological and radiomic features from multiphase CT, to enhance accuracy in distinguishing pheochromocytoma from large-diameter lipid-poor adrenal adenoma (LP-AA). A retrospective analysis was conducted on 202 patients with pathologically confirmed adrenal PHEO and large-diameter LP-AA from three tertiary care centers. Key clinico-radiological and radiomics features were selected to construct models: a clinico-radiological model, a radiomics model, and a combined nomogram model for predicting these two tumor types. Model performance and robustness were evaluated using external validation, calibration curve analysis, machine learning techniques, and Delong's test. Additionally, the Hosmer-Lemeshow test, decision curve analysis, and five-fold cross-validation were employed to assess the clinical translational potential of the combined nomogram model. All models demonstrated high diagnostic performance, with AUC values exceeding 0.8 across all cohorts, confirming their reliability. The combined nomogram model exhibited the highest diagnostic accuracy, with AUC values of 0.994, 0.979, and 0.945 for the training, validation, and external test cohorts, respectively. Notably, the unenhanced combined nomogram model was not significantly inferior to the three-phase combined nomogram model (p > 0.05 in the validation and test cohorts; p = 0.049 in the training cohort). The combined nomogram model reliably distinguishes between PHEO and LP-AA, shows strong clinical translational potential, and may reduce the need for contrast-enhanced CT scans. Not applicable.

Function of <sup>18</sup>F-FDG PET/CT radiomics in the detection of checkpoint inhibitor-induced liver injury (CHILI).

Huigen CMC, Coukos A, Latifyan S, Nicod Lalonde M, Schaefer N, Abler D, Depeursinge A, Prior JO, Fraga M, Jreige M

pubmed logopapersAug 4 2025
In the last decade, immunotherapy, particularly immune checkpoint inhibitors, has revolutionized cancer treatment and improved prognosis. However, severe checkpoint inhibitor-induced liver injury (CHILI), which can lead to treatment discontinuation or death, occurs in up to 18% of the patients. The aim of this study is to evaluate the value of PET/CT radiomics analysis for the detection of CHILI. Patients with CHILI grade 2 or higher who underwent liver function tests and liver biopsy were retrospectively included. Minors, patients with cognitive impairments, and patients with viral infections were excluded from the study. The patients' liver and spleen were contoured on the anonymized PET/CT imaging data, followed by radiomics feature extraction. Principal component analysis (PCA) and Bonferroni corrections were used for statistical analysis and exploration of radiomics features related to CHILI. Sixteen patients were included and 110 radiomics features were extracted from PET images. Liver PCA-5 showed significance as well as one associated feature but did not remain significant after Bonferroni correction. Spleen PCA-5 differed significantly between CHILI and non-CHILI patients even after Bonferroni correction, possibly linked to the higher metabolic function of the spleen in autoimmune diseases due to the recruitment of immune cells. This pilot study identified statistically significant differences in PET-derived radiomics features of the spleen and observable changes in the liver on PET/CT scans before and after the onset of CHILI. Identifying these features could aid in diagnosing or predicting CHILI, potentially enabling personalized treatment. Larger multicenter prospective studies are needed to confirm these findings and develop automated detection methods.

Natural language processing evaluation of trends in cervical cancer incidence in radiology reports: A ten-year survey.

López-Úbeda P, Martín-Noguerol T, Luna A

pubmed logopapersAug 4 2025
Cervical cancer commonly associated with human papillomavirus (HPV) infection, remains the fourth most common cancer in women globally. This study aims to develop and evaluate a Natural Language Processing (NLP) system to identify and analyze cervical cancer incidence trends from 2013 to 2023 at our institution, focusing on age-specific variations and evaluating the possible impact of HPV vaccination. This retrospective cohort study, we analyzed unstructured radiology reports collected between 2013 and 2023, comprising 433,207 studies involving 250,181 women who underwent CT, MRI, or ultrasound scans of the abdominopelvic region. A rule-based NLP system was developed to extract references to cervical cancer from these reports and validated against a set of 200 manually annotated cases reviewed by an experienced radiologist. The NLP system demonstrated excellent performance, achieving an accuracy of over 99.5 %. This high reliability enabled its application in a large-scale population study. Results show that the women under 30 maintain a consistently low cervical cancer incidence, likely reflecting early HPV vaccination impact. The 30-40 cohorts declined until 2020, followed by a slight increase, while the 40-60 groups exhibited an overall downward trend with fluctuations, suggesting long-term vaccine effects. Incidence in patients over 60 also declined, though with greater variability, possibly due to other risk factors. The developed NLP system effectively identified cervical cancer cases from unstructured radiology reports, facilitating an accurate analysis of the impact of HPV vaccination on cervical cancer prevalence and imaging study requirements. This approach demonstrates the potential of AI and NLP tools in enhancing data accuracy and efficiency in medical epidemiology research. NLP-based approaches can significantly improve the collection and analysis of epidemiological data on cervical cancer, supporting the development of more targeted and personalized prevention strategies-particularly in populations with heterogeneous HPV vaccination coverage.

Artificial intelligence: a new era in prostate cancer diagnosis and treatment.

Vidiyala N, Parupathi P, Sunkishala P, Sree C, Gujja A, Kanagala P, Meduri SK, Nyavanandi D

pubmed logopapersAug 4 2025
Prostate cancer (PCa) represents one of the most prevalent cancers among men, with substantial challenges in timely and accurate diagnosis and subsequent treatment. Traditional diagnosis and treatment methods for PCa, such as prostate-specific antigen (PSA) biomarker detection, digital rectal examination, imaging (CT/MRI) analysis, and biopsy histopathological examination, suffer from limitations such as a lack of specificity, generation of false positives or negatives, and difficulty in handling large data, leading to overdiagnosis and overtreatment. The integration of artificial intelligence (AI) in PCa diagnosis and treatment is revolutionizing traditional approaches by offering advanced tools for early detection, personalized treatment planning, and patient management. AI technologies, especially machine learning and deep learning, improve diagnostic accuracy and treatment planning. The AI algorithms analyze imaging data, like MRI and ultrasound, to identify cancerous lesions effectively with great precision. In addition, AI algorithms enhance risk assessment and prognosis by combining clinical, genomic, and imaging data. This leads to more tailored treatment strategies, enabling informed decisions about active surveillance, surgery, or new therapies, thereby improving quality of life while reducing unnecessary diagnoses and treatments. This review examines current AI applications in PCa care, focusing on their transformative impact on diagnosis and treatment planning while recognizing potential challenges. It also outlines expected improvements in diagnosis through AI-integrated systems and decision support tools for healthcare teams. The findings highlight AI's potential to enhance clinical outcomes, operational efficiency, and patient-centred care in managing PCa.
Page 7 of 73727 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.