Sort by:
Page 68 of 73727 results

Deep learning progressive distill for predicting clinical response to conversion therapy from preoperative CT images of advanced gastric cancer patients.

Han S, Zhang T, Deng W, Han S, Wu H, Jiang B, Xie W, Chen Y, Deng T, Wen X, Liu N, Fan J

pubmed logopapersMay 16 2025
Identifying patients suitable for conversion therapy through early non-invasive screening is crucial for tailoring treatment in advanced gastric cancer (AGC). This study aimed to develop and validate a deep learning method, utilizing preoperative computed tomography (CT) images, to predict the response to conversion therapy in AGC patients. This retrospective study involved 140 patients. We utilized Progressive Distill (PD) methodology to construct a deep learning model for predicting clinical response to conversion therapy based on preoperative CT images. Patients in the training set (n = 112) and in the test set (n = 28) were sourced from The First Affiliated Hospital of Wenzhou Medical University between September 2017 and November 2023. Our PD models' performance was compared with baseline models and those utilizing Knowledge Distillation (KD), with evaluation metrics including accuracy, sensitivity, specificity, receiver operating characteristic curves, areas under the receiver operating characteristic curve (AUCs), and heat maps. The PD model exhibited the best performance, demonstrating robust discrimination of clinical response to conversion therapy with an AUC of 0.99 and accuracy of 99.11% in the training set, and 0.87 AUC and 85.71% accuracy in the test set. Sensitivity and specificity were 97.44% and 100% respectively in the training set, 85.71% and 85.71% each in the test set, suggesting absence of discernible bias. The deep learning model of PD method accurately predicts clinical response to conversion therapy in AGC patients. Further investigation is warranted to assess its clinical utility alongside clinicopathological parameters.

Assessing fetal lung maturity: Integration of ultrasound radiomics and deep learning.

Chen W, Zeng B, Ling X, Chen C, Lai J, Lin J, Liu X, Zhou H, Guo X

pubmed logopapersMay 16 2025
This study built a model to forecast the maturity of lungs by blending radiomics and deep learning methods. We examined ultrasound images from 263 pregnancies in the pregnancy stages. Utilizing the GE VOLUSON E8 system we captured images to extract and analyze radiomic features. These features were integrated with clinical data by means of deep learning algorithms such as DenseNet121 to enhance the accuracy of assessing fetal lung maturity. This combined model was validated by receiver operating characteristic (ROC) curve, calibration diagram, as well as decision curve analysis (DCA). We discovered that the accuracy and reliability of the diagnosis indicated that this method significantly improves the level of prediction of fetal lung maturity. This novel non-invasive diagnostic technology highlights the potential advantages of integrating diverse data sources to enhance prenatal care and infant health. The study lays groundwork, for validation and refinement of the model across various healthcare settings.

Evaluation of tumour pseudocapsule using computed tomography-based radiomics in pancreatic neuroendocrine tumours to predict prognosis and guide surgical strategy: a cohort study.

Wang Y, Gu W, Huang D, Zhang W, Chen Y, Xu J, Li Z, Zhou C, Chen J, Xu X, Tang W, Yu X, Ji S

pubmed logopapersMay 16 2025
To date, indications for a surgical approach of small pancreatic neuroendocrine tumours (PanNETs) remain controversial. This cohort study aimed to identify the pseudocapsule status preoperatively to estimate the rationality of enucleation and survival prognosis of PanNETs, particularly in small tumours. Clinicopathological data were collected from patients with PanNETs who underwent the first pancreatectomy at our hospital (n = 578) between February 2012 and September 2023. Kaplan-Meier curves were constructed to visualise prognostic differences. Five distinct tissue samples were obtained for single-cell RNA sequencing (scRNA-seq) to evaluate variations in the tumour microenvironment. Radiological features were extracted from preoperative arterial-phase contrast-enhanced computed tomography. The performance of the pseudocapsule radiomics model was assessed using the area under the curve (AUC) metric. 475 cases (mean [SD] age, 53.01 [12.20] years; female vs male, 1.24:1) were eligible for this study. The mean pathological diameter of tumour was 2.99 cm (median: 2.50 cm; interquartile range [IQR]: 1.50-4.00 cm). These cases were stratified into complete (223, 46.95%) and incomplete (252, 53.05%) pseudocapsule groups. A statistically significant difference in aggressive indicators was observed between the two groups (P < 0.001). Through scRNA-seq analysis, we identified that the incomplete group presented a markedly immunosuppressive microenvironment. Regarding the impact on recurrence-free survival, the 3-year and 5-year rates were 94.8% and 92.5%, respectively, for the complete pseudocapsule group, compared to 76.7% and 70.4% for the incomplete pseudocapsule group. The radiomics-predictive model has a significant discrimination for the state of the pseudocapsule, particularly in small tumours (AUC, 0.744; 95% CI, 0.652-0.837). By combining computed tomography-based radiomics and machine learning for preoperative identification of pseudocapsule status, the intact group is more likely to benefit from enucleation.

A monocular endoscopic image depth estimation method based on a window-adaptive asymmetric dual-branch Siamese network.

Chong N, Yang F, Wei K

pubmed logopapersMay 15 2025
Minimally invasive surgery involves entering the body through small incisions or natural orifices, using a medical endoscope for observation and clinical procedures. However, traditional endoscopic images often suffer from low texture and uneven illumination, which can negatively impact surgical and diagnostic outcomes. To address these challenges, many researchers have applied deep learning methods to enhance the processing of endoscopic images. This paper proposes a monocular medical endoscopic image depth estimation method based on a window-adaptive asymmetric dual-branch Siamese network. In this network, one branch focuses on processing global image information, while the other branch concentrates on local details. An improved lightweight Squeeze-and-Excitation (SE) module is added to the final layer of each branch, dynamically adjusting the inter-channel weights through self-attention. The outputs from both branches are then integrated using a lightweight cross-attention feature fusion module, enabling cross-branch feature interaction and enhancing the overall feature representation capability of the network. Extensive ablation and comparative experiments were conducted on medical datasets (EAD2019, Hamlyn, M2caiSeg, UCL) and a non-medical dataset (NYUDepthV2), with both qualitative and quantitative results-measured in terms of RMSE, AbsRel, FLOPs and running time-demonstrating the superiority of the proposed model. Additionally, comparisons with CT images show good organ boundary matching capability, highlighting the potential of our method for clinical applications. The key code of this paper is available at: https://github.com/superchongcnn/AttenAdapt_DE .

A computed tomography-based radiomics prediction model for BRAF mutation status in colorectal cancer.

Zhou B, Tan H, Wang Y, Huang B, Wang Z, Zhang S, Zhu X, Wang Z, Zhou J, Cao Y

pubmed logopapersMay 15 2025
The aim of this study was to develop and validate CT venous phase image-based radiomics to predict BRAF gene mutation status in preoperative colorectal cancer patients. In this study, 301 patients with pathologically confirmed colorectal cancer were retrospectively enrolled, comprising 225 from Centre I (73 mutant and 152 wild-type) and 76 from Centre II (36 mutant and 40 wild-type). The Centre I cohort was randomly divided into a training set (n = 158) and an internal validation set (n = 67) in a 7:3 ratio, while Centre II served as an independent external validation set (n = 76). The whole tumor region of interest was segmented, and radiomics characteristics were extracted. To explore whether tumor expansion could improve the performance of the study objectives, the tumor contour was extended by 3 mm in this study. Finally, a t-test, Pearson correlation, and LASSO regression were used to screen out features strongly associated with BRAF mutations. Based on these features, six classifiers-Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), Logistic Regression (LR), K-Nearest Neighbors (KNN), and Extreme Gradient Boosting (XGBoost)-were constructed. The model performance and clinical utility were evaluated using receiver operating characteristic (ROC) curves, decision curve analysis, accuracy, sensitivity, and specificity. Gender was an independent predictor of BRAF mutations. The unexpanded RF model, constructed using 11 imaging histologic features, demonstrated the best predictive performance. For the training cohort, it achieved an AUC of 0.814 (95% CI 0.732-0.895), an accuracy of 0.810, and a sensitivity of 0.620. For the internal validation cohort, it achieved an AUC of 0.798 (95% CI 0.690-0.907), an accuracy of 0.761, and a sensitivity of 0.609. For the external validation cohort, it achieved an AUC of 0.737 (95% CI 0.616-0.847), an accuracy of 0.658, and a sensitivity of 0.667. A machine learning model based on CT radiomics can effectively predict BRAF mutations in patients with colorectal cancer. The unexpanded RF model demonstrated optimal predictive performance.

Application of deep learning with fractal images to sparse-view CT.

Kawaguchi R, Minagawa T, Hori K, Hashimoto T

pubmed logopapersMay 15 2025
Deep learning has been widely used in research on sparse-view computed tomography (CT) image reconstruction. While sufficient training data can lead to high accuracy, collecting medical images is often challenging due to legal or ethical concerns, making it necessary to develop methods that perform well with limited data. To address this issue, we explored the use of nonmedical images for pre-training. Therefore, in this study, we investigated whether fractal images could improve the quality of sparse-view CT images, even with a reduced number of medical images. Fractal images generated by an iterated function system (IFS) were used for nonmedical images, and medical images were obtained from the CHAOS dataset. Sinograms were then generated using 36 projections in sparse-view and the images were reconstructed by filtered back-projection (FBP). FBPConvNet and WNet (first module: learning fractal images, second module: testing medical images, and third module: learning output) were used as networks. The effectiveness of pre-training was then investigated for each network. The quality of the reconstructed images was evaluated using two indices: structural similarity (SSIM) and peak signal-to-noise ratio (PSNR). The network parameters pre-trained with fractal images showed reduced artifacts compared to the network trained exclusively with medical images, resulting in improved SSIM. WNet outperformed FBPConvNet in terms of PSNR. Pre-training WNet with fractal images produced the best image quality, and the number of medical images required for main-training was reduced from 5000 to 1000 (80% reduction). Using fractal images for network training can reduce the number of medical images required for artifact reduction in sparse-view CT. Therefore, fractal images can improve accuracy even with a limited amount of training data in deep learning.

Interobserver agreement between artificial intelligence models in the thyroid imaging and reporting data system (TIRADS) assessment of thyroid nodules.

Leoncini A, Trimboli P

pubmed logopapersMay 15 2025
As ultrasound (US) is the most accurate tool for assessing the thyroid nodule (TN) risk of malignancy (RoM), international societies have published various Thyroid Imaging and Reporting Data Systems (TIRADSs). With the recent advent of artificial intelligence (AI), clinicians and researchers should ask themselves how AI could interpret the terminology of the TIRADSs and whether or not AIs agree in the risk assessment of TNs. The study aim was to analyze the interobserver agreement (IOA) between AIs in assessing the RoM of TNs across various TIRADSs categories using a cases series created combining TIRADSs descriptors. ChatGPT, Google Gemini, and Claude were compared. ACR-TIRADS, EU-TIRADS, and K-TIRADS, were employed to evaluate the AI assessment. Multiple written scenarios for the three TIRADS were created, the cases were evaluated by the three AIs, and their assessments were analyzed and compared. The IOA was estimated by comparing the kappa (κ) values. Ninety scenarios were created. With ACR-TIRADS the IOA analysis gave κ = 0.58 between ChatGPT and Gemini, 0.53 between ChatGPT and Claude, and 0.90 between Gemini and Claude. With EU-TIRADS it was observed κ value = 0.73 between ChatGPT and Gemini, 0.62 between ChatGPT and Claude, and 0.72 between Gemini and Claude. With K-TIRADS it was found κ = 0.88 between ChatGPT and Gemini, 0.70 between ChatGPT and Claude, and 0.61 between Gemini and Claude. This study found that there were non-negligible variability between the three AIs. Clinicians and patients should be aware of these new findings.

Predicting Immunotherapy Response in Unresectable Hepatocellular Carcinoma: A Comparative Study of Large Language Models and Human Experts.

Xu J, Wang J, Li J, Zhu Z, Fu X, Cai W, Song R, Wang T, Li H

pubmed logopapersMay 15 2025
Hepatocellular carcinoma (HCC) is an aggressive cancer with limited biomarkers for predicting immunotherapy response. Recent advancements in large language models (LLMs) like GPT-4, GPT-4o, and Gemini offer the potential for enhancing clinical decision-making through multimodal data analysis. However, their effectiveness in predicting immunotherapy response, especially compared to human experts, remains unclear. This study assessed the performance of GPT-4, GPT-4o, and Gemini in predicting immunotherapy response in unresectable HCC, compared to radiologists and oncologists of varying expertise. A retrospective analysis of 186 patients with unresectable HCC utilized multimodal data (clinical and CT images). LLMs were evaluated with zero-shot prompting and two strategies: the 'voting method' and the 'OR rule method' for improved sensitivity. Performance metrics included accuracy, sensitivity, area under the curve (AUC), and agreement across LLMs and physicians.GPT-4o, using the 'OR rule method,' achieved 65% accuracy and 47% sensitivity, comparable to intermediate physicians but lower than senior physicians (accuracy: 72%, p = 0.045; sensitivity: 70%, p < 0.0001). Gemini-GPT, combining GPT-4, GPT-4o, and Gemini, achieved an AUC of 0.69, similar to senior physicians (AUC: 0.72, p = 0.35), with 68% accuracy, outperforming junior and intermediate physicians while remaining comparable to senior physicians (p = 0.78). However, its sensitivity (58%) was lower than senior physicians (p = 0.0097). LLMs demonstrated higher inter-model agreement (κ = 0.59-0.70) than inter-physician agreement, especially among junior physicians (κ = 0.15). This study highlights the potential of LLMs, particularly Gemini-GPT, as valuable tools in predicting immunotherapy response for HCC.

Recent advancements in personalized management of prostate cancer biochemical recurrence after radical prostatectomy.

Falkenbach F, Ekrutt J, Maurer T

pubmed logopapersMay 15 2025
Biochemical recurrence (BCR) after radical prostatectomy exhibits heterogeneous prognostic implications. Recent advancements in imaging and biomarkers have high potential for personalizing care. Prostate-specific membrane antigen imaging (PSMA)-PET/CT has revolutionized the BCR management in prostate cancer by detecting microscopic lesions earlier than conventional staging, leading to improved cancer control outcomes and changes in treatment plans in approximately two-thirds of cases. Salvage radiotherapy, often combined with androgen deprivation therapy, remains the standard treatment for high-risk BCR postprostatectomy, with PSMA-PET/CT guiding treatment adjustments, such as the radiation field, and improving progression-free survival. Advancements in biomarkers, genomic classifiers, and artificial intelligence-based models have enhanced risk stratification and personalized treatment planning, resulting in both treatment intensification and de-escalation. While conventional risk grouping relying on Gleason score and PSA level and kinetics remain the foundation for BCR management, PSMA-PET/CT, novel biomarkers, and artificial intelligence may enable more personalized treatment strategies.
Page 68 of 73727 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.