Sort by:
Page 67 of 1111106 results

Computed Tomography Radiomics-based Combined Model for Predicting Thymoma Risk Subgroups: A Multicenter Retrospective Study.

Liu Y, Luo C, Wu Y, Zhou S, Ruan G, Li H, Chen W, Lin Y, Liu L, Quan T, He X

pubmed logopapersJun 1 2025
Accurately distinguishing histological subtypes and risk categorization of thymomas is difficult. To differentiate the histologic risk categories of thymomas, we developed a combined radiomics model based on non-enhanced and contrast-enhanced computed tomography (CT) radiomics, clinical, and semantic features. In total, 360 patients with pathologically-confirmed thymomas who underwent CT examinations were retrospectively recruited from three centers. Patients were classified using improved pathological classification criteria as low-risk (LRT: types A and AB) or high-risk (HRT: types B1, B2, and B3). The training and external validation sets comprised 274 (from centers 1 and 2) and 86 (center 3) patients, respectively. A clinical-semantic model was built using clinical and semantic variables. Radiomics features were filtered using intraclass correlation coefficients, correlation analysis, and univariate logistic regression. An optimal radiomics model (Rad_score) was constructed using the AutoML algorithm, while a combined model was constructed by integrating Rad_score with clinical and semantic features. The predictive and clinical performances of the models were evaluated using receiver operating characteristic/calibration curve analyses and decision-curve analysis, respectively. Radiomics and combined models (area under curve: training set, 0.867 and 0.884; external validation set, 0.792 and 0.766, respectively) exhibited performance superior to the clinical-semantic model. The combined model had higher accuracy than the radiomics model (0.79 vs. 0.78, p<0.001) in the entire cohort. The original_firstorder_median of venous phase had the highest relative importance among features in the radiomics model. Radiomics and combined radiomics models may serve as noninvasive discrimination tools to differentiate thymoma risk classifications.

Deep learning driven interpretable and informed decision making model for brain tumour prediction using explainable AI.

Adnan KM, Ghazal TM, Saleem M, Farooq MS, Yeun CY, Ahmad M, Lee SW

pubmed logopapersJun 1 2025
Brain Tumours are highly complex, particularly when it comes to their initial and accurate diagnosis, as this determines patient prognosis. Conventional methods rely on MRI and CT scans and employ generic machine learning techniques, which are heavily dependent on feature extraction and require human intervention. These methods may fail in complex cases and do not produce human-interpretable results, making it difficult for clinicians to trust the model's predictions. Such limitations prolong the diagnostic process and can negatively impact the quality of treatment. The advent of deep learning has made it a powerful tool for complex image analysis tasks, such as detecting brain Tumours, by learning advanced patterns from images. However, deep learning models are often considered "black box" systems, where the reasoning behind predictions remains unclear. To address this issue, the present study applies Explainable AI (XAI) alongside deep learning for accurate and interpretable brain Tumour prediction. XAI enhances model interpretability by identifying key features such as Tumour size, location, and texture, which are crucial for clinicians. This helps build their confidence in the model and enables them to make better-informed decisions. In this research, a deep learning model integrated with XAI is proposed to develop an interpretable framework for brain Tumour prediction. The model is trained on an extensive dataset comprising imaging and clinical data and demonstrates high AUC while leveraging XAI for model explainability and feature selection. The study findings indicate that this approach improves predictive performance, achieving an accuracy of 92.98% and a miss rate of 7.02%. Additionally, interpretability tools such as LIME and Grad-CAM provide clinicians with a clearer understanding of the decision-making process, supporting diagnosis and treatment. This model represents a significant advancement in brain Tumour prediction, with the potential to enhance patient outcomes and contribute to the field of neuro-oncology.

Predicting long-term patency of radiocephalic arteriovenous fistulas with machine learning and the PREDICT-AVF web app.

Fitzgibbon JJ, Ruan M, Heindel P, Appah-Sampong A, Dey T, Khan A, Hentschel DM, Ozaki CK, Hussain MA

pubmed logopapersJun 1 2025
The goal of this study was to expand our previously created prediction tool (PREDICT-AVF) and web app by estimating long-term primary and secondary patency of radiocephalic AVFs. The data source was 911 patients from PATENCY-1 and PATENCY-2 randomized controlled trials, which enrolled patients undergoing new radiocephalic AVF creation with prospective longitudinal follow up and ultrasound measurements. Models were built using a combination of baseline characteristics and post-operative ultrasound measurements to estimate patency up to 2.5 years. Discrimination performance was assessed, and an interactive web app was created using the most robust model. At 2.5 years, the unadjusted primary and secondary patency (95% CI) was 29% (26-33%) and 68% (65-72%). Models using baseline characteristics generally did not perform as well as those using post-operative ultrasound measurements. Overall, the Cox model (4-6 weeks ultrasound) had the best discrimination performance for primary and secondary patency, with an integrated Brier score of 0.183 (0.167, 0.199) and 0.106 (0.085, 0.126). Expansion of the PREDICT-AVF web app to include prediction of long-term patency can help guide clinicians in developing comprehensive end-stage kidney disease Life-Plans with hemodialysis access patients.

CT-Based Deep Learning Predicts Prognosis in Esophageal Squamous Cell Cancer Patients Receiving Immunotherapy Combined with Chemotherapy.

Huang X, Huang Y, Li P, Xu K

pubmed logopapersJun 1 2025
Immunotherapy combined with chemotherapy has improved outcomes for some esophageal squamous cell carcinoma (ESCC) patients, but accurate pre-treatment risk stratification remains a critical gap. This study constructed a deep learning (DL) model to predict survival outcomes in ESCC patients receiving immunotherapy combined with chemotherapy. A DL model was developed to predict survival outcomes in ESCC patients receiving immunotherapy and chemotherapy. Retrospective data from 482 patients across three institutions were split into training (N=322), internal test (N=79), and external test (N=81) sets. Unenhanced computed tomography (CT) scans were processed to analyze tumor and peritumoral regions. The model evaluated multiple input configurations: original tumor regions of interest (ROIs), ROI subregions, and ROIs expanded by 1 and 3 pixels. Performance was assessed using Harrell's C-index and receiver operating characteristic (ROC) curves. A multimodal model combined DL-derived risk scores with five key clinical and laboratory features. The Shapley Additive Explanations (SHAP) method elucidated the contribution of individual features to model predictions. The DL model with 1-pixel peritumoral expansion achieved the best accuracy, yielding a C-index of 0.75 for the internal test set and 0.60 for the external test set. Hazard ratios for high-risk patients were 1.82 (95% CI: 1.19-2.46; P=0.02) in internal test set. The multimodal model achieved C-indices of 0.74 and 0.61 for internal and external test sets, respectively. Kaplan-Meier analysis revealed significant survival differences between high- and low-risk groups (P<0.05). SHAP analysis identified tumor response, risk score, and age as critical contributors to predictions. This DL model demonstrates efficacy in stratifying ESCC patients by survival risk, particularly when integrating peritumoral imaging and clinical features. The model could serve as a valuable pre-treatment tool to facilitate the implementation of personalized treatment strategies for ESCC patients undergoing immunotherapy and chemotherapy.

Deep Learning Radiomics Nomogram Based on MRI for Differentiating between Borderline Ovarian Tumors and Stage I Ovarian Cancer: A Multicenter Study.

Wang X, Quan T, Chu X, Gao M, Zhang Y, Chen Y, Bai G, Chen S, Wei M

pubmed logopapersJun 1 2025
To develop and validate a deep learning radiomics nomogram (DLRN) based on T2-weighted MRI to distinguish between borderline ovarian tumors (BOTs) and stage I epithelial ovarian cancer (EOC) preoperatively. This retrospective multicenter study enrolled 279 patients from three centers, divided into a training set (n = 207) and an external test set (n = 72). The intra- and peritumoral radiomics analysis was employed to develop a combined radiomics model. A deep learning model was constructed based on the largest orthogonal slices of the tumor volume, and a clinical model was constructed using independent clinical predictors. The DLRN was then constructed by integrating deep learning, intra- and peritumoral radiomics, and clinical predictors. For comparison, an original radiomics model based solely on tumor volume (excluding the peritumoral area) was also constructed. All models were validated through 10-fold cross-validation and external testing, and their predictive performance was evaluated by the area under the receiver operating characteristic curve (AUC). The DLRN demonstrated superior performance across the 10-fold cross-validation, with the highest AUC of 0.825±0.082. On the external test set, the DLRN significantly outperformed the clinical model and the original radiomics model (AUC = 0.819 vs. 0.708 and 0.670, P = 0.047 and 0.015, respectively). Furthermore, the combined radiomics model performed significantly better than the original radiomics model (AUC = 0.778 vs. 0.670, P = 0.043). The DLRN exhibited promising performance in distinguishing BOTs from stage I EOC preoperatively, thus potentially assisting clinical decision-making.

Integration of Deep Learning and Sub-regional Radiomics Improves the Prediction of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer Patients.

Wu X, Wang J, Chen C, Cai W, Guo Y, Guo K, Chen Y, Shi Y, Chen J, Lin X, Jiang X

pubmed logopapersJun 1 2025
The precise prediction of response to neoadjuvant chemoradiotherapy is crucial for tailoring perioperative treatment in patients diagnosed with locally advanced rectal cancer (LARC). This retrospective study aims to develop and validate a model that integrates deep learning and sub-regional radiomics from MRI imaging to predict pathological complete response (pCR) in patients with LARC. We retrospectively enrolled 768 eligible participants from three independent hospitals who had received neoadjuvant chemoradiotherapy followed by radical surgery. Pretreatment pelvic MRI scans (T2-weighted), were collected for annotation and feature extraction. The K-means approach was used to segment the tumor into sub-regions. Radiomics and deep learning features were extracted by the Pyradiomics and 3D ResNet50, respectively. The predictive models were developed using the radiomics, sub-regional radiomics, and deep learning features with the machine learning algorithm in training cohort, and then validated in the external tests. The models' performance was assessed using various metrics, including the area under the curve (AUC), decision curve analysis, Kaplan-Meier survival analysis. We constructed a combined model, named SRADL, which includes deep learning with sub-regional radiomics signatures, enabling precise prediction of pCR in LARC patients. SRADL had satisfactory performance for the prediction of pCR in the training cohort (AUC 0.925 [95% CI 0.894 to 0.948]), and in test 1 (AUC 0.915 [95% CI 0.869 to 0.949]) and in test 2 (AUC 0.902 [95% CI 0.846 to 0.945]). By employing optimal threshold of 0.486, the predicted pCR group had longer survival compared to predicted non-pCR group across three cohorts. SRADL also outperformed other single-modality prediction models. The novel SRADL, which integrates deep learning with sub-regional signatures, showed high accuracy and robustness in predicting pCR to neoadjuvant chemoradiotherapy using pretreatment MRI images, making it a promising tool for the personalized management of LARC.

MRI-based Radiomics for Predicting Prostate Cancer Grade Groups: A Systematic Review and Meta-analysis of Diagnostic Test Accuracy Studies.

Lomer NB, Ashoobi MA, Ahmadzadeh AM, Sotoudeh H, Tabari A, Torigian DA

pubmed logopapersJun 1 2025
Prostate cancer (PCa) is the second most common cancer among men and a leading cause of cancer-related mortalities. Radiomics has shown promising performances in the classification of PCa grade group (GG) in several studies. Here, we aimed to systematically review and meta-analyze the performance of radiomics in predicting GG in PCa. Adhering to PRISMA-DTA guidelines, we included studies employing magnetic resonance imaging-derived radiomics for predicting GG, with histopathologic evaluations as the reference standard. Databases searched included Web of Sciences, PubMed, Scopus, and Embase. The Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) and METhodological RadiomICs Score (METRICS) tools were used for quality assessment. Pooled estimates for sensitivity, specificity, likelihood ratios, diagnostic odds ratio, and area under the curve (AUC) were calculated. Cochran's Q and I-squared tests assessed heterogeneity, while meta-regression, subgroup analysis, and sensitivity analysis addressed potential sources. Publication bias was evaluated using Deek's funnel plot, while clinical applicability was assessed with Fagan nomograms and likelihood ratio scattergrams. Data were extracted from 43 studies involving 9983 patients. Radiomics models demonstrated high accuracy in predicting GG. Patient-based analyses yielded AUCs of 0.93 for GG≥2, 0.91 for GG≥3, and 0.93 for GG≥4. Lesion-based analyses showed AUCs of 0.84 for GG≥2 and 0.89 for GG≥3. Significant heterogeneity was observed, and meta-regression identified sources of heterogeneity. Radiomics model showed moderate power to exclude and confirm the GG. Radiomics appears to be an accurate noninvasive tool for predicting PCa GG. It improves the performance of standard diagnostic methods, enhancing clinical decision-making.

Development and External Validation of a Detection Model to Retrospectively Identify Patients With Acute Respiratory Distress Syndrome.

Levy E, Claar D, Co I, Fuchs BD, Ginestra J, Kohn R, McSparron JI, Patel B, Weissman GE, Kerlin MP, Sjoding MW

pubmed logopapersJun 1 2025
The aim of this study was to develop and externally validate a machine-learning model that retrospectively identifies patients with acute respiratory distress syndrome (acute respiratory distress syndrome [ARDS]) using electronic health record (EHR) data. In this retrospective cohort study, ARDS was identified via physician-adjudication in three cohorts of patients with hypoxemic respiratory failure (training, internal validation, and external validation). Machine-learning models were trained to classify ARDS using vital signs, respiratory support, laboratory data, medications, chest radiology reports, and clinical notes. The best-performing models were assessed and internally and externally validated using the area under receiver-operating curve (AUROC), area under precision-recall curve, integrated calibration index (ICI), sensitivity, specificity, positive predictive value (PPV), and ARDS timing. Patients with hypoxemic respiratory failure undergoing mechanical ventilation within two distinct health systems. None. There were 1,845 patients in the training cohort, 556 in the internal validation cohort, and 199 in the external validation cohort. ARDS prevalence was 19%, 17%, and 31%, respectively. Regularized logistic regression models analyzing structured data (EHR model) and structured data and radiology reports (EHR-radiology model) had the best performance. During internal and external validation, the EHR-radiology model had AUROC of 0.91 (95% CI, 0.88-0.93) and 0.88 (95% CI, 0.87-0.93), respectively. Externally, the ICI was 0.13 (95% CI, 0.08-0.18). At a specified model threshold, sensitivity and specificity were 80% (95% CI, 75%-98%), PPV was 64% (95% CI, 58%-71%), and the model identified patients with a median of 2.2 hours (interquartile range 0.2-18.6) after meeting Berlin ARDS criteria. Machine-learning models analyzing EHR data can retrospectively identify patients with ARDS across different institutions.

Structural and metabolic topological alterations associated with butylphthalide treatment in mild cognitive impairment: Data from a randomized, double-blind, placebo-controlled trial.

Han X, Gong S, Gong J, Wang P, Li R, Chen R, Xu C, Sun W, Li S, Chen Y, Yang Y, Luan H, Wen B, Guo J, Lv S, Wei C

pubmed logopapersJun 1 2025
Effective intervention for mild cognitive impairment (MCI) is key for preventing dementia. As a neuroprotective agent, butylphthalide has the potential to treat MCI due to Alzheimer disease (AD). However, the pharmacological mechanism of butylphthalide from the brain network perspective is not clear. Therefore, we aimed to investigate the multimodal brain network changes associated with butylphthalide treatment in MCI due to AD. A total of 270 patients with MCI due to AD received either butylphthalide or placebo at a ratio of 1:1 for 1 year. Effective treatment was defined as a decrease in the Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-cog) > 2.5. Brain networks were constructed using T1-magnetic resonance imaging and fluorodeoxyglucose positron emission tomography. A support vector machine was applied to develop predictive models. Both treatment (drug vs. placebo)-time interactions and efficacy (effective vs. ineffective)-time interactions were detected on some overlapping structural network metrics. Simple effects analyses revealed a significantly increased global efficiency in the structural network under both treatment and effective treatment of butylphthalide. Among the overlapping metrics, an increased degree centrality of left paracentral lobule was significantly related to poorer cognitive improvement. The predictive model based on baseline multimodal network metrics exhibited high accuracy (88.93%) of predicting butylphthalide's efficacy. Butylphthalide may restore abnormal organization in structural networks of patients with MCI due to AD, and baseline network metrics could be predictive markers for therapeutic efficacy of butylphthalide. This study was registered in the Chinese Clinical Trial Registry (Registration Number: ChiCTR1800018362, Registration Date: 2018-09-13).

Predicting hemorrhagic transformation in acute ischemic stroke: a systematic review, meta-analysis, and methodological quality assessment of CT/MRI-based deep learning and radiomics models.

Salimi M, Vadipour P, Bahadori AR, Houshi S, Mirshamsi A, Fatemian H

pubmed logopapersJun 1 2025
Acute ischemic stroke (AIS) is a major cause of mortality and morbidity, with hemorrhagic transformation (HT) as a severe complication. Accurate prediction of HT is essential for optimizing treatment strategies. This review assesses the accuracy and utility of deep learning (DL) and radiomics in predicting HT through imaging, regarding clinical decision-making for AIS patients. A literature search was conducted across five databases (Pubmed, Scopus, Web of Science, Embase, IEEE) up to January 23, 2025. Studies involving DL or radiomics-based ML models for predicting HT in AIS patients were included. Data from training, validation, and clinical-combined models were extracted and analyzed separately. Pooled sensitivity, specificity, and AUC were calculated with a random-effects bivariate model. For the quality assessment of studies, the Methodological Radiomics Score (METRICS) and QUADAS-2 tool were used. 16 studies consisting of 3,083 individual participants were included in the meta-analysis. The pooled AUC for training cohorts was 0.87, sensitivity 0.80, and specificity 0.85. For validation cohorts, AUC was 0.87, sensitivity 0.81, and specificity 0.86. Clinical-combined models showed an AUC of 0.93, sensitivity 0.84, and specificity 0.89. Moderate to severe heterogeneity was noted and addressed. Deep-learning models outperformed radiomics models, while clinical-combined models outperformed deep learning-only and radiomics-only models. The average METRICS score was 62.85%. No publication bias was detected. DL and radiomics models showed great potential in predicting HT in AIS patients. However, addressing methodological issues-such as inconsistent reference standards and limited external validation-is essential for the clinical implementation of these models.
Page 67 of 1111106 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.