Sort by:
Page 66 of 71706 results

A survey of deep-learning-based radiology report generation using multimodal inputs.

Wang X, Figueredo G, Li R, Zhang WE, Chen W, Chen X

pubmed logopapersMay 13 2025
Automatic radiology report generation can alleviate the workload for physicians and minimize regional disparities in medical resources, therefore becoming an important topic in the medical image analysis field. It is a challenging task, as the computational model needs to mimic physicians to obtain information from multi-modal input data (i.e., medical images, clinical information, medical knowledge, etc.), and produce comprehensive and accurate reports. Recently, numerous works have emerged to address this issue using deep-learning-based methods, such as transformers, contrastive learning, and knowledge-base construction. This survey summarizes the key techniques developed in the most recent works and proposes a general workflow for deep-learning-based report generation with five main components, including multi-modality data acquisition, data preparation, feature learning, feature fusion and interaction, and report generation. The state-of-the-art methods for each of these components are highlighted. Additionally, we summarize the latest developments in large model-based methods and model explainability, along with public datasets, evaluation methods, current challenges, and future directions in this field. We have also conducted a quantitative comparison between different methods in the same experimental setting. This is the most up-to-date survey that focuses on multi-modality inputs and data fusion for radiology report generation. The aim is to provide comprehensive and rich information for researchers interested in automatic clinical report generation and medical image analysis, especially when using multimodal inputs, and to assist them in developing new algorithms to advance the field.

Deep Learning-Derived Cardiac Chamber Volumes and Mass From PET/CT Attenuation Scans: Associations With Myocardial Flow Reserve and Heart Failure.

Hijazi W, Shanbhag A, Miller RJH, Kavanagh PB, Killekar A, Lemley M, Wopperer S, Knight S, Le VT, Mason S, Acampa W, Rosamond T, Dey D, Berman DS, Chareonthaitawee P, Di Carli MF, Slomka PJ

pubmed logopapersMay 13 2025
Computed tomography (CT) attenuation correction scans are an intrinsic part of positron emission tomography (PET) myocardial perfusion imaging using PET/CT, but anatomic information is rarely derived from these ultralow-dose CT scans. We aimed to assess the association between deep learning-derived cardiac chamber volumes (right atrial, right ventricular, left ventricular, and left atrial) and mass (left ventricular) from these scans with myocardial flow reserve and heart failure hospitalization. We included 18 079 patients with consecutive cardiac PET/CT from 6 sites. A deep learning model estimated cardiac chamber volumes and left ventricular mass from computed tomography attenuation correction imaging. Associations between deep learning-derived CT mass and volumes with heart failure hospitalization and reduced myocardial flow reserve were assessed in a multivariable analysis. During a median follow-up of 4.3 years, 1721 (9.5%) patients experienced heart failure hospitalization. Patients with 3 or 4 abnormal chamber volumes were 7× more likely to be hospitalized for heart failure compared with patients with normal volumes. In adjusted analyses, left atrial volume (hazard ratio [HR], 1.25 [95% CI, 1.19-1.30]), right atrial volume (HR, 1.29 [95% CI, 1.23-1.35]), right ventricular volume (HR, 1.25 [95% CI, 1.20-1.31]), left ventricular volume (HR, 1.27 [95% CI, 1.23-1.35]), and left ventricular mass (HR, 1.25 [95% CI, 1.18-1.32]) were independently associated with heart failure hospitalization. In multivariable analyses, left atrial volume (odds ratio, 1.14 [95% CI, 1.0-1.19]) and ventricular mass (odds ratio, 1.12 [95% CI, 1.6-1.17]) were independent predictors of reduced myocardial flow reserve. Deep learning-derived chamber volumes and left ventricular mass from computed tomography attenuation correction were predictive of heart failure hospitalization and reduced myocardial flow reserve in patients undergoing cardiac PET perfusion imaging. This anatomic data can be routinely reported along with other PET/CT parameters to improve risk prediction.

Cardiovascular imaging techniques for electrophysiologists.

Rogers AJ, Reynbakh O, Ahmed A, Chung MK, Charate R, Yarmohammadi H, Gopinathannair R, Khan H, Lakkireddy D, Leal M, Srivatsa U, Trayanova N, Wan EY

pubmed logopapersMay 13 2025
Rapid technological advancements in noninvasive and invasive imaging including echocardiography, computed tomography, magnetic resonance imaging and positron emission tomography have allowed for improved anatomical visualization and precise measurement of cardiac structure and function. These imaging modalities allow for evaluation of how cardiac substrate changes, such as myocardial wall thickness, fibrosis, scarring and chamber enlargement and/or dilation, have an important role in arrhythmia initiation and perpetuation. Here, we review the various imaging techniques and modalities used by clinical and basic electrophysiologists to study cardiac arrhythmia mechanisms, periprocedural planning, risk stratification and precise delivery of ablation therapy. We also review the use of artificial intelligence and machine learning to improve identification of areas for triggered activity and isthmuses in reentrant arrhythmias, which may be favorable ablation targets.

Enhancing Liver Fibrosis Measurement: Deep Learning and Uncertainty Analysis Across Multi-Centre Cohorts

Wojciechowska, M. K., Malacrino, S., Windell, D., Culver, E., Dyson, J., UK-AIH Consortium,, Rittscher, J.

medrxiv logopreprintMay 13 2025
O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=111 SRC="FIGDIR/small/25326981v1_ufig1.gif" ALT="Figure 1"> View larger version (31K): [email protected]@14e7b87org.highwire.dtl.DTLVardef@19005c4org.highwire.dtl.DTLVardef@6ac42f_HPS_FORMAT_FIGEXP M_FIG O_FLOATNOGraphical AbstractC_FLOATNO C_FIG HighlightsO_LIA retrospective cohort of liver biopsies collected from over 20 healthcare centres has been assembled. C_LIO_LIThe cohort is characterized on the basis of collagen staining used for liver fibrosis assessment. C_LIO_LIA computational pipeline for the quantification of collagen from liver histology slides has been developed and applied to the described cohorts. C_LIO_LIUncertainty estimation is evaluated as a method to build trust in deep-learning based collagen predictions. C_LI The introduction of digital pathology has revolutionised the way in which histology-based measurements can support large, multi-centre studies. How-ever, pooling data from various centres often reveals significant differences in specimen quality, particularly regarding histological staining protocols. These variations present challenges in reliably quantifying features from stained tissue sections using image analysis. In this study, we investigate the statistical variation of measuring fibrosis across a liver cohort composed of four individual studies from 20 clinical sites across Europe and North America. In a first step, we apply colour consistency measurements to analyse staining variability across this diverse cohort. Subsequently, a learnt segmentation model is used to quantify the collagen proportionate area (CPA) and employed uncertainty mapping to evaluate the quality of the segmentations. Our analysis highlights a lack of standardisation in PicroSirius Red (PSR) staining practices, revealing significant variability in staining protocols across institutions. The deconvolution of the staining of the digitised slides identified the different numbers and types of counterstains used, leading to potentially incomparable results. Our analysis highlights the need for standardised staining protocols to ensure reliable collagen quantification in liver biopsies. The tools and methodologies presented here can be applied to perform slide colour quality control in digital pathology studies, thus enhancing the comparability and reproducibility of fibrosis assessment in the liver and other tissues.

Unsupervised Out-of-Distribution Detection in Medical Imaging Using Multi-Exit Class Activation Maps and Feature Masking

Yu-Jen Chen, Xueyang Li, Yiyu Shi, Tsung-Yi Ho

arxiv logopreprintMay 13 2025
Out-of-distribution (OOD) detection is essential for ensuring the reliability of deep learning models in medical imaging applications. This work is motivated by the observation that class activation maps (CAMs) for in-distribution (ID) data typically emphasize regions that are highly relevant to the model's predictions, whereas OOD data often lacks such focused activations. By masking input images with inverted CAMs, the feature representations of ID data undergo more substantial changes compared to those of OOD data, offering a robust criterion for differentiation. In this paper, we introduce a novel unsupervised OOD detection framework, Multi-Exit Class Activation Map (MECAM), which leverages multi-exit CAMs and feature masking. By utilizing mult-exit networks that combine CAMs from varying resolutions and depths, our method captures both global and local feature representations, thereby enhancing the robustness of OOD detection. We evaluate MECAM on multiple ID datasets, including ISIC19 and PathMNIST, and test its performance against three medical OOD datasets, RSNA Pneumonia, COVID-19, and HeadCT, and one natural image OOD dataset, iSUN. Comprehensive comparisons with state-of-the-art OOD detection methods validate the effectiveness of our approach. Our findings emphasize the potential of multi-exit networks and feature masking for advancing unsupervised OOD detection in medical imaging, paving the way for more reliable and interpretable models in clinical practice.

A Deep Learning-Driven Framework for Inhalation Injury Grading Using Bronchoscopy Images

Yifan Li, Alan W Pang, Jo Woon Chong

arxiv logopreprintMay 13 2025
Inhalation injuries face a challenge in clinical diagnosis and grading due to the limitations of traditional methods, such as Abbreviated Injury Score (AIS), which rely on subjective assessments and show weak correlations with clinical outcomes. This study introduces a novel deep learning-based framework for grading inhalation injuries using bronchoscopy images with the duration of mechanical ventilation as an objective metric. To address the scarcity of medical imaging data, we propose enhanced StarGAN, a generative model that integrates Patch Loss and SSIM Loss to improve synthetic images' quality and clinical relevance. The augmented dataset generated by enhanced StarGAN significantly improved classification performance when evaluated using the Swin Transformer, achieving an accuracy of 77.78%, an 11.11% improvement over the original dataset. Image quality was assessed using the Fr\'echet Inception Distance (FID), where Enhanced StarGAN achieved the lowest FID of 30.06, outperforming baseline models. Burn surgeons confirmed the realism and clinical relevance of the generated images, particularly the preservation of bronchial structures and color distribution. These results highlight the potential of enhanced StarGAN in addressing data limitations and improving classification accuracy for inhalation injury grading.

Automatic Quantification of Ki-67 Labeling Index in Pediatric Brain Tumors Using QuPath

Spyretos, C., Pardo Ladino, J. M., Blomstrand, H., Nyman, P., Snodahl, O., Shamikh, A., Elander, N. O., Haj-Hosseini, N.

medrxiv logopreprintMay 12 2025
AO_SCPLOWBSTRACTC_SCPLOWThe quantification of the Ki-67 labeling index (LI) is critical for assessing tumor proliferation and prognosis in tumors, yet manual scoring remains a common practice. This study presents an automated workflow for Ki-67 scoring in whole slide images (WSIs) using an Apache Groovy code script for QuPath, complemented by a Python-based post-processing script, providing cell density maps and summary tables. The tissue and cell segmentation are performed using StarDist, a deep learning model, and adaptive thresholding to classify Ki-67 positive and negative nuclei. The pipeline was applied to a cohort of 632 pediatric brain tumor cases with 734 Ki-67-stained WSIs from the Childrens Brain Tumor Network. Medulloblastoma showed the highest Ki-67 LI (median: 19.84), followed by atypical teratoid rhabdoid tumor (median: 19.36). Moderate values were observed in brainstem glioma-diffuse intrinsic pontine glioma (median: 11.50), high-grade glioma (grades 3 & 4) (median: 9.50), and ependymoma (median: 5.88). Lower indices were found in meningioma (median: 1.84), while the lowest were seen in low-grade glioma (grades 1 & 2) (median: 0.85), dysembryoplastic neuroepithelial tumor (median: 0.63), and ganglioglioma (median: 0.50). The results aligned with the consensus of the oncology, demonstrating a significant correlation in Ki-67 LI across most of the tumor families/types, with high malignancy tumors showing the highest proliferation indices and lower malignancy tumors exhibiting lower Ki-67 LI. The automated approach facilitates the assessment of large amounts of Ki-67 WSIs in research settings.

Benchmarking Radiology Report Generation From Noisy Free-Texts.

Yuan Y, Zheng Y, Qu L

pubmed logopapersMay 12 2025
Automatic radiology report generation can enhance diagnostic efficiency and accuracy. However, clean open-source imaging scan-report pairs are limited in scale and variety. Moreover, the vast amount of radiological texts available online is often too noisy to be directly employed. To address this challenge, we introduce a novel task called Noisy Report Refinement (NRR), which generates radiology reports from noisy free-texts. To achieve this, we propose a report refinement pipeline that leverages large language models (LLMs) enhanced with guided self-critique and report selection strategies. To address the inability of existing radiology report generation metrics in measuring cleanliness, radiological usefulness, and factual correctness across various modalities of reports in NRR task, we introduce a new benchmark, NRRBench, for NRR evaluation. This benchmark includes two online-sourced datasets and four clinically explainable LLM-based metrics: two metrics evaluate the matching rate of radiology entities and modality-specific template attributes respectively, one metric assesses report cleanliness, and a combined metric evaluates overall NRR performance. Experiments demonstrate that guided self-critique and report selection strategies significantly improve the quality of refined reports. Additionally, our proposed metrics show a much higher correlation with noisy rate and error count of reports than radiology report generation metrics in evaluating NRR.

ABS-Mamba: SAM2-Driven Bidirectional Spiral Mamba Network for Medical Image Translation

Feng Yuan, Yifan Gao, Wenbin Wu, Keqing Wu, Xiaotong Guo, Jie Jiang, Xin Gao

arxiv logopreprintMay 12 2025
Accurate multi-modal medical image translation requires ha-rmonizing global anatomical semantics and local structural fidelity, a challenge complicated by intermodality information loss and structural distortion. We propose ABS-Mamba, a novel architecture integrating the Segment Anything Model 2 (SAM2) for organ-aware semantic representation, specialized convolutional neural networks (CNNs) for preserving modality-specific edge and texture details, and Mamba's selective state-space modeling for efficient long- and short-range feature dependencies. Structurally, our dual-resolution framework leverages SAM2's image encoder to capture organ-scale semantics from high-resolution inputs, while a parallel CNNs branch extracts fine-grained local features. The Robust Feature Fusion Network (RFFN) integrates these epresentations, and the Bidirectional Mamba Residual Network (BMRN) models spatial dependencies using spiral scanning and bidirectional state-space dynamics. A three-stage skip fusion decoder enhances edge and texture fidelity. We employ Efficient Low-Rank Adaptation (LoRA+) fine-tuning to enable precise domain specialization while maintaining the foundational capabilities of the pre-trained components. Extensive experimental validation on the SynthRAD2023 and BraTS2019 datasets demonstrates that ABS-Mamba outperforms state-of-the-art methods, delivering high-fidelity cross-modal synthesis that preserves anatomical semantics and structural details to enhance diagnostic accuracy in clinical applications. The code is available at https://github.com/gatina-yone/ABS-Mamba

Enhancing noninvasive pancreatic cystic neoplasm diagnosis with multimodal machine learning.

Huang W, Xu Y, Li Z, Li J, Chen Q, Huang Q, Wu Y, Chen H

pubmed logopapersMay 12 2025
Pancreatic cystic neoplasms (PCNs) are a complex group of lesions with a spectrum of malignancy. Accurate differentiation of PCN types is crucial for patient management, as misdiagnosis can result in unnecessary surgeries or treatment delays, affecting the quality of life. The significance of developing a non-invasive, accurate diagnostic model is underscored by the need to improve patient outcomes and reduce the impact of these conditions. We developed a machine learning model capable of accurately identifying different types of PCNs in a non-invasive manner, by using a dataset comprising 449 MRI and 568 CT scans from adult patients, spanning from 2009 to 2022. The study's results indicate that our multimodal machine learning algorithm, which integrates both clinical and imaging data, significantly outperforms single-source data algorithms. Specifically, it demonstrated state-of-the-art performance in classifying PCN types, achieving an average accuracy of 91.2%, precision of 91.7%, sensitivity of 88.9%, and specificity of 96.5%. Remarkably, for patients with mucinous cystic neoplasms (MCNs), regardless of undergoing MRI or CT imaging, the model achieved a 100% prediction accuracy rate. It indicates that our non-invasive multimodal machine learning model offers strong support for the early screening of MCNs, and represents a significant advancement in PCN diagnosis for improving clinical practice and patient outcomes. We also achieved the best results on an additional pancreatic cancer dataset, which further proves the generality of our model.
Page 66 of 71706 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.