Sort by:
Page 64 of 94933 results

Echo-DND: A dual noise diffusion model for robust and precise left ventricle segmentation in echocardiography

Abdur Rahman, Keerthiveena Balraj, Manojkumar Ramteke, Anurag Singh Rathore

arxiv logopreprintJun 18 2025
Recent advancements in diffusion probabilistic models (DPMs) have revolutionized image processing, demonstrating significant potential in medical applications. Accurate segmentation of the left ventricle (LV) in echocardiograms is crucial for diagnostic procedures and necessary treatments. However, ultrasound images are notoriously noisy with low contrast and ambiguous LV boundaries, thereby complicating the segmentation process. To address these challenges, this paper introduces Echo-DND, a novel dual-noise diffusion model specifically designed for this task. Echo-DND leverages a unique combination of Gaussian and Bernoulli noises. It also incorporates a multi-scale fusion conditioning module to improve segmentation precision. Furthermore, it utilizes spatial coherence calibration to maintain spatial integrity in segmentation masks. The model's performance was rigorously validated on the CAMUS and EchoNet-Dynamic datasets. Extensive evaluations demonstrate that the proposed framework outperforms existing SOTA models. It achieves high Dice scores of 0.962 and 0.939 on these datasets, respectively. The proposed Echo-DND model establishes a new standard in echocardiogram segmentation, and its architecture holds promise for broader applicability in other medical imaging tasks, potentially improving diagnostic accuracy across various medical domains. Project page: https://abdur75648.github.io/Echo-DND

NERO: Explainable Out-of-Distribution Detection with Neuron-level Relevance

Anju Chhetri, Jari Korhonen, Prashnna Gyawali, Binod Bhattarai

arxiv logopreprintJun 18 2025
Ensuring reliability is paramount in deep learning, particularly within the domain of medical imaging, where diagnostic decisions often hinge on model outputs. The capacity to separate out-of-distribution (OOD) samples has proven to be a valuable indicator of a model's reliability in research. In medical imaging, this is especially critical, as identifying OOD inputs can help flag potential anomalies that might otherwise go undetected. While many OOD detection methods rely on feature or logit space representations, recent works suggest these approaches may not fully capture OOD diversity. To address this, we propose a novel OOD scoring mechanism, called NERO, that leverages neuron-level relevance at the feature layer. Specifically, we cluster neuron-level relevance for each in-distribution (ID) class to form representative centroids and introduce a relevance distance metric to quantify a new sample's deviation from these centroids, enhancing OOD separability. Additionally, we refine performance by incorporating scaled relevance in the bias term and combining feature norms. Our framework also enables explainable OOD detection. We validate its effectiveness across multiple deep learning architectures on the gastrointestinal imaging benchmarks Kvasir and GastroVision, achieving improvements over state-of-the-art OOD detection methods.

Multimodal Large Language Models for Medical Report Generation via Customized Prompt Tuning

Chunlei Li, Jingyang Hou, Yilei Shi, Jingliang Hu, Xiao Xiang Zhu, Lichao Mou

arxiv logopreprintJun 18 2025
Medical report generation from imaging data remains a challenging task in clinical practice. While large language models (LLMs) show great promise in addressing this challenge, their effective integration with medical imaging data still deserves in-depth exploration. In this paper, we present MRG-LLM, a novel multimodal large language model (MLLM) that combines a frozen LLM with a learnable visual encoder and introduces a dynamic prompt customization mechanism. Our key innovation lies in generating instance-specific prompts tailored to individual medical images through conditional affine transformations derived from visual features. We propose two implementations: prompt-wise and promptbook-wise customization, enabling precise and targeted report generation. Extensive experiments on IU X-ray and MIMIC-CXR datasets demonstrate that MRG-LLM achieves state-of-the-art performance in medical report generation. Our code will be made publicly available.

Deep Learning-Based Adrenal Gland Volumetry for the Prediction of Diabetes.

Ku EJ, Yoon SH, Park SS, Yoon JW, Kim JH

pubmed logopapersJun 18 2025
The long-term association between adrenal gland volume (AGV) and type 2 diabetes (T2D) remains unclear. We aimed to determine the association between deep learning-based AGV and current glycemic status and incident T2D. In this observational study, adults who underwent abdominopelvic computed tomography (CT) for health checkups (2011-2012), but had no adrenal nodules, were included. AGV was measured from CT images using a three-dimensional nnU-Net deep learning algorithm. We assessed the association between AGV and T2D using a cross-sectional and longitudinal design. We used 500 CT scans (median age, 52.3 years; 253 men) for model development and a Multi-Atlas Labeling Beyond the Cranial Vault dataset for external testing. A clinical cohort included a total of 9708 adults (median age, 52.0 years; 5,769 men). The deep learning model demonstrated a dice coefficient of 0.71±0.11 for adrenal segmentation and a mean volume difference of 0.6± 0.9 mL in the external dataset. Participants with T2D at baseline had a larger AGV than those without (7.3 cm3 vs. 6.7 cm3 and 6.3 cm3 vs. 5.5 cm3 for men and women, respectively, all P<0.05). The optimal AGV cutoff values for predicting T2D were 7.2 cm3 in men and 5.5 cm3 in women. Over a median 7.0-year follow-up, T2D developed in 938 participants. Cumulative T2D risk was accentuated with high AGV compared with low AGV (adjusted hazard ratio, 1.27; 95% confidence interval, 1.11 to 1.46). AGV, measured using deep learning algorithms, is associated with current glycemic status and can significantly predict the development of T2D.

Quality control system for patient positioning and filling in meta-information for chest X-ray examinations.

Borisov AA, Semenov SS, Kirpichev YS, Arzamasov KM, Omelyanskaya OV, Vladzymyrskyy AV, Vasilev YA

pubmed logopapersJun 18 2025
During radiography, irregularities occur, leading to decrease in the diagnostic value of the images obtained. The purpose of this work was to develop a system for automated quality assurance of patient positioning in chest radiographs, with detection of suboptimal contrast, brightness, and metadata errors. The quality assurance system was trained and tested using more than 69,000 X-rays of the chest and other anatomical areas from the Unified Radiological Information Service (URIS) and several open datasets. Our dataset included studies regardless of a patient's gender and race, while the sole exclusion criterion being age below 18 years. A training dataset of radiographs labeled by expert radiologists was used to train an ensemble of modified deep convolutional neural networks architectures ResNet152V2 and VGG19 to identify various quality deficiencies. Model performance was accessed using area under the receiver operating characteristic curve (ROC-AUC), precision, recall, F1-score, and accuracy metrics. Seven neural network models were trained to classify radiographs by the following quality deficiencies: failure to capture the target anatomic region, chest rotation, suboptimal brightness, incorrect anatomical area, projection errors, and improper photometric interpretation. All metrics for each model exceed 95%, indicating high predictive value. All models were combined into a unified system for evaluating radiograph quality. The processing time per image is approximately 3 s. The system supports multiple use cases: integration into an automated radiographic workstations, external quality assurance system for radiology departments, acquisition quality audits for municipal health systems, and routing of studies to diagnostic AI models.

EchoFM: Foundation Model for Generalizable Echocardiogram Analysis.

Kim S, Jin P, Song S, Chen C, Li Y, Ren H, Li X, Liu T, Li Q

pubmed logopapersJun 18 2025
Echocardiography is the first-line noninvasive cardiac imaging modality, providing rich spatio-temporal information on cardiac anatomy and physiology. Recently, foundation model trained on extensive and diverse datasets has shown strong performance in various downstream tasks. However, translating foundation models into the medical imaging domain remains challenging due to domain differences between medical and natural images, the lack of diverse patient and disease datasets. In this paper, we introduce EchoFM, a general-purpose vision foundation model for echocardiography trained on a large-scale dataset of over 20 million echocardiographic images from 6,500 patients. To enable effective learning of rich spatio-temporal representations from periodic videos, we propose a novel self-supervised learning framework based on a masked autoencoder with a spatio-temporal consistent masking strategy and periodic-driven contrastive learning. The learned cardiac representations can be readily adapted and fine-tuned for a wide range of downstream tasks, serving as a strong and flexible backbone model. We validate EchoFM through experiments across key downstream tasks in the clinical echocardiography workflow, leveraging public and multi-center internal datasets. EchoFM consistently outperforms SOTA methods, demonstrating superior generalization capabilities and flexibility. The code and checkpoints are available at: https://github.com/SekeunKim/EchoFM.git.

Risk Estimation of Knee Osteoarthritis Progression via Predictive Multi-task Modelling from Efficient Diffusion Model using X-ray Images

David Butler, Adrian Hilton, Gustavo Carneiro

arxiv logopreprintJun 17 2025
Medical imaging plays a crucial role in assessing knee osteoarthritis (OA) risk by enabling early detection and disease monitoring. Recent machine learning methods have improved risk estimation (i.e., predicting the likelihood of disease progression) and predictive modelling (i.e., the forecasting of future outcomes based on current data) using medical images, but clinical adoption remains limited due to their lack of interpretability. Existing approaches that generate future images for risk estimation are complex and impractical. Additionally, previous methods fail to localize anatomical knee landmarks, limiting interpretability. We address these gaps with a new interpretable machine learning method to estimate the risk of knee OA progression via multi-task predictive modelling that classifies future knee OA severity and predicts anatomical knee landmarks from efficiently generated high-quality future images. Such image generation is achieved by leveraging a diffusion model in a class-conditioned latent space to forecast disease progression, offering a visual representation of how particular health conditions may evolve. Applied to the Osteoarthritis Initiative dataset, our approach improves the state-of-the-art (SOTA) by 2\%, achieving an AUC of 0.71 in predicting knee OA progression while offering ~9% faster inference time.

Deep learning based colorectal cancer detection in medical images: A comprehensive analysis of datasets, methods, and future directions.

Gülmez B

pubmed logopapersJun 17 2025
This comprehensive review examines the current state and evolution of artificial intelligence applications in colorectal cancer detection through medical imaging from 2019 to 2025. The study presents a quantitative analysis of 110 high-quality publications and 9 publicly accessible medical image datasets used for training and validation. Various convolutional neural network architectures-including ResNet (40 implementations), VGG (18 implementations), and emerging transformer-based models (12 implementations)-for classification, object detection, and segmentation tasks are systematically categorized and evaluated. The investigation encompasses hyperparameter optimization techniques utilized to enhance model performance, with particular focus on genetic algorithms and particle swarm optimization approaches. The role of explainable AI methods in medical diagnosis interpretation is analyzed through visualization techniques such as Grad-CAM and SHAP. Technical limitations, including dataset scarcity, computational constraints, and standardization challenges, are identified through trend analysis. Research gaps in current methodologies are highlighted through comparative assessment of performance metrics across different architectural implementations. Potential future research directions, including multimodal learning and federated learning approaches, are proposed based on publication trend analysis. This review serves as a comprehensive reference for researchers in medical image analysis and clinical practitioners implementing AI-based colorectal cancer detection systems.

NeuroMoE: A Transformer-Based Mixture-of-Experts Framework for Multi-Modal Neurological Disorder Classification

Wajih Hassan Raza, Aamir Bader Shah, Yu Wen, Yidan Shen, Juan Diego Martinez Lemus, Mya Caryn Schiess, Timothy Michael Ellmore, Renjie Hu, Xin Fu

arxiv logopreprintJun 17 2025
The integration of multi-modal Magnetic Resonance Imaging (MRI) and clinical data holds great promise for enhancing the diagnosis of neurological disorders (NDs) in real-world clinical settings. Deep Learning (DL) has recently emerged as a powerful tool for extracting meaningful patterns from medical data to aid in diagnosis. However, existing DL approaches struggle to effectively leverage multi-modal MRI and clinical data, leading to suboptimal performance. To address this challenge, we utilize a unique, proprietary multi-modal clinical dataset curated for ND research. Based on this dataset, we propose a novel transformer-based Mixture-of-Experts (MoE) framework for ND classification, leveraging multiple MRI modalities-anatomical (aMRI), Diffusion Tensor Imaging (DTI), and functional (fMRI)-alongside clinical assessments. Our framework employs transformer encoders to capture spatial relationships within volumetric MRI data while utilizing modality-specific experts for targeted feature extraction. A gating mechanism with adaptive fusion dynamically integrates expert outputs, ensuring optimal predictive performance. Comprehensive experiments and comparisons with multiple baselines demonstrate that our multi-modal approach significantly enhances diagnostic accuracy, particularly in distinguishing overlapping disease states. Our framework achieves a validation accuracy of 82.47\%, outperforming baseline methods by over 10\%, highlighting its potential to improve ND diagnosis by applying multi-modal learning to real-world clinical data.

BRISC: Annotated Dataset for Brain Tumor Segmentation and Classification with Swin-HAFNet

Amirreza Fateh, Yasin Rezvani, Sara Moayedi, Sadjad Rezvani, Fatemeh Fateh, Mansoor Fateh

arxiv logopreprintJun 17 2025
Accurate segmentation and classification of brain tumors from Magnetic Resonance Imaging (MRI) remain key challenges in medical image analysis, largely due to the lack of high-quality, balanced, and diverse datasets. In this work, we present a new curated MRI dataset designed specifically for brain tumor segmentation and classification tasks. The dataset comprises 6,000 contrast-enhanced T1-weighted MRI scans annotated by certified radiologists and physicians, spanning three major tumor types-glioma, meningioma, and pituitary-as well as non-tumorous cases. Each sample includes high-resolution labels and is categorized across axial, sagittal, and coronal imaging planes to facilitate robust model development and cross-view generalization. To demonstrate the utility of the dataset, we propose a transformer-based segmentation model and benchmark it against established baselines. Our method achieves the highest weighted mean Intersection-over-Union (IoU) of 82.3%, with improvements observed across all tumor categories. Importantly, this study serves primarily as an introduction to the dataset, establishing foundational benchmarks for future research. We envision this dataset as a valuable resource for advancing machine learning applications in neuro-oncology, supporting both academic research and clinical decision-support development. datasetlink: https://www.kaggle.com/datasets/briscdataset/brisc2025/
Page 64 of 94933 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.