Sort by:
Page 60 of 65646 results

Multiparameter MRI-based model integrating radiomics and deep learning for preoperative staging of laryngeal squamous cell carcinoma.

Xie K, Jiang H, Chen X, Ning Y, Yu Q, Lv F, Liu R, Zhou Y, Xu L, Yue Q, Peng J

pubmed logopapersMay 9 2025
The accurate preoperative staging of laryngeal squamous cell carcinoma (LSCC) provides valuable guidance for clinical decision-making. The objective of this study was to establish a multiparametric MRI model using radiomics and deep learning (DL) to preoperatively distinguish between Stages I-II and III-IV of LSCC. Data from 401 histologically confirmed LSCC patients were collected from two centers (training set: 213; internal test set: 91; external test set: 97). Radiomics features were extracted from the MRI images, and seven radiomics models based on single and combined sequences were developed via random forest (RF). A DL model was constructed via ResNet 18, where DL features were extracted from its final fully connected layer. These features were fused with crucial radiomics features to create a combined model. The performance of the models was assessed using the area under the receiver operating characteristic (ROC) curve (AUC) and compared with the radiologist performances. The predictive capability of the combined model for Progression-Free Survival (PFS) was evaluated via Kaplan-Meier survival analysis and the Harrell's Concordance Index (C-index). In the external test set, the combined model had an AUC of 0.877 (95% CI 0.807-0.946), outperforming the DL model (AUC: 0.811) and the optimal radiomics model (AUC: 0.835). The combined model significantly outperformed both the DL (p = 0.017) and the optimal radiomics models (p = 0.039), and the radiologists (both p < 0.050). Moreover, the combined model demonstrated great prognostic predictive value in patients with LSCC, achieving a C-index of 0.624 for PFS. This combined model enhances preoperative LSCC staging, aiding in making more informed clinical decisions.

Resting-state functional MRI metrics to detect freezing of gait in Parkinson's disease: a machine learning approach.

Vicidomini C, Fontanella F, D'Alessandro T, Roviello GN, De Stefano C, Stocchi F, Quarantelli M, De Pandis MF

pubmed logopapersMay 9 2025
Among the symptoms that can occur in Parkinson's disease (PD), Freezing of Gait (FOG) is a disabling phenomenon affecting a large proportion of patients, and it remains not fully understood. Accurate classification of FOG in PD is crucial for tailoring effective interventions and is necessary for a better understanding of its underlying mechanisms. In the present work, we applied four Machine Learning (ML) classifiers (Decision Tree - DT, Random Forest - RF, Multilayer Perceptron - MLP, Logistic Regression - LOG) to different four metrics derived from resting-state functional Magnetic Resonance Imaging (rs-fMRI) data processing to assess their accuracy in automatically classifying PD patients based on the presence or absence of Freezing of Gait (FOG). To validate our approach, we applied the same methodologies to distinguish PD patients from a group of Healthy Subject (HS). The performance of the four ML algorithms was validated by repeated k-fold cross-validation on randomly selected independent training and validation subsets. The results showed that when discriminating PD from HS, the best performance was achieved using RF applied to fractional Amplitude of Low-Frequency Fluctuations (fALFF) data (AUC 96.8 ± 2 %). Similarly, when discriminating PD-FOG from PD-nFOG, the RF algorithm was again the best performer on all four metrics, with AUCs above 90 %. Finally, trying to unbox how AI system black-box choices were made, we extracted features' importance scores for the best-performing method(s) and discussed them based on the results obtained to date in rs-fMRI studies on FOG in PD and, more generally, in PD. In summary, regions that were more frequently selected when differentiating both PD from HS and PD-FOG from PD-nFOG patients were mainly relevant to the extrapyramidal system, as well as visual and default mode networks. In addition, the salience network and the supplementary motor area played an additional major role in differentiating PD-FOG from PD-nFOG patients.

Robust Computation of Subcortical Functional Connectivity Guided by Quantitative Susceptibility Mapping: An Application in Parkinson's Disease Diagnosis.

Qin J, Wu H, Wu C, Guo T, Zhou C, Duanmu X, Tan S, Wen J, Zheng Q, Yuan W, Zhu Z, Chen J, Wu J, He C, Ma Y, Liu C, Xu X, Guan X, Zhang M

pubmed logopapersMay 8 2025
Previous resting state functional MRI (rs-fMRI) analyses of the basal ganglia in Parkinson's disease heavily relied on T1-weighted imaging (T1WI) atlases. However, subcortical structures are characterized by subtle contrast differences, making their accurate delineation challenging on T1WI. In this study, we aimed to introduce and validate a method that incorporates quantitative susceptibility mapping (QSM) into the rs-fMRI analytical pipeline to achieve precise subcortical nuclei segmentation and improve the stability of RSFC measurements in Parkinson's disease. A total of 321 participants (148 patients with Parkinson's Disease and 173 normal controls) were enrolled. We performed cross-modal registration at the individual level for rs-fMRI to QSM (FUNC2QSM) and T1WI (FUNC2T1), respectively.The consistency and accuracy of resting state functional connectivity (RSFC) measurements in two registration approaches were assessed by intraclass correlation coefficient and mutual information. Bootstrap analysis was performed to validate the stability of the RSFC differences between Parkinson's disease and normal controls. RSFC-based machine learning models were constructed for Parkinson's disease classification, using optimized hyperparameters (RandomizedSearchCV with 5-fold cross-validation). The consistency of RSFC measurements between the two registration methods was poor, whereas the QSM-guided approach showed better mutual information values, suggesting higher registration accuracy. The disruptions of RSFC identified with the QSM-guided approach were more stable and reliable, as confirmed by bootstrap analysis. In classification models, the QSM-guided method consistently outperformed the T1WI-guided method, achieving higher test-set ROC-AUC values (FUNC2QSM: 0.87-0.90, FUNC2T1: 0.67-0.70). The QSM-guided approach effectively enhanced the accuracy of subcortical segmentation and the stability of RSFC measurement, thus facilitating future biomarker development in Parkinson's disease.

MoRe-3DGSMR: Motion-resolved reconstruction framework for free-breathing pulmonary MRI based on 3D Gaussian representation

Tengya Peng, Ruyi Zha, Qing Zou

arxiv logopreprintMay 8 2025
This study presents an unsupervised, motion-resolved reconstruction framework for high-resolution, free-breathing pulmonary magnetic resonance imaging (MRI), utilizing a three-dimensional Gaussian representation (3DGS). The proposed method leverages 3DGS to address the challenges of motion-resolved 3D isotropic pulmonary MRI reconstruction by enabling data smoothing between voxels for continuous spatial representation. Pulmonary MRI data acquisition is performed using a golden-angle radial sampling trajectory, with respiratory motion signals extracted from the center of k-space in each radial spoke. Based on the estimated motion signal, the k-space data is sorted into multiple respiratory phases. A 3DGS framework is then applied to reconstruct a reference image volume from the first motion state. Subsequently, a patient-specific convolutional neural network is trained to estimate the deformation vector fields (DVFs), which are used to generate the remaining motion states through spatial transformation of the reference volume. The proposed reconstruction pipeline is evaluated on six datasets from six subjects and bench-marked against three state-of-the-art reconstruction methods. The experimental findings demonstrate that the proposed reconstruction framework effectively reconstructs high-resolution, motion-resolved pulmonary MR images. Compared with existing approaches, it achieves superior image quality, reflected by higher signal-to-noise ratio and contrast-to-noise ratio. The proposed unsupervised 3DGS-based reconstruction method enables accurate motion-resolved pulmonary MRI with isotropic spatial resolution. Its superior performance in image quality metrics over state-of-the-art methods highlights its potential as a robust solution for clinical pulmonary MR imaging.

FF-PNet: A Pyramid Network Based on Feature and Field for Brain Image Registration

Ying Zhang, Shuai Guo, Chenxi Sun, Yuchen Zhu, Jinhai Xiang

arxiv logopreprintMay 8 2025
In recent years, deformable medical image registration techniques have made significant progress. However, existing models still lack efficiency in parallel extraction of coarse and fine-grained features. To address this, we construct a new pyramid registration network based on feature and deformation field (FF-PNet). For coarse-grained feature extraction, we design a Residual Feature Fusion Module (RFFM), for fine-grained image deformation, we propose a Residual Deformation Field Fusion Module (RDFFM). Through the parallel operation of these two modules, the model can effectively handle complex image deformations. It is worth emphasizing that the encoding stage of FF-PNet only employs traditional convolutional neural networks without any attention mechanisms or multilayer perceptrons, yet it still achieves remarkable improvements in registration accuracy, fully demonstrating the superior feature decoding capabilities of RFFM and RDFFM. We conducted extensive experiments on the LPBA and OASIS datasets. The results show our network consistently outperforms popular methods in metrics like the Dice Similarity Coefficient.

Impact of spectrum bias on deep learning-based stroke MRI analysis.

Krag CH, Müller FC, Gandrup KL, Plesner LL, Sagar MV, Andersen MB, Nielsen M, Kruuse C, Boesen M

pubmed logopapersMay 8 2025
To evaluate spectrum bias in stroke MRI analysis by excluding cases with uncertain acute ischemic lesions (AIL) and examining patient, imaging, and lesion factors associated with these cases. This single-center retrospective observational study included adults with brain MRIs for suspected stroke between January 2020 and April 2022. Diagnostic uncertain AIL were identified through reader disagreement or low certainty grading by a radiology resident, a neuroradiologist, and the original radiology report consisting of various neuroradiologists. A commercially available deep learning tool analyzing brain MRIs for AIL was evaluated to assess the impact of excluding uncertain cases on diagnostic odds ratios. Patient-related, MRI acquisition-related, and lesion-related factors were analyzed using the Wilcoxon rank sum test, χ2 test, and multiple logistic regression. The study was approved by the National Committee on Health Research Ethics. In 989 patients (median age 73 (IQR: 59-80), 53% female), certain AIL were found in 374 (38%), uncertain AIL in 63 (6%), and no AIL in 552 (56%). Excluding uncertain cases led to a four-fold increase in the diagnostic odds ratio (from 68 to 278), while a simulated case-control design resulted in a six-fold increase compared to the full disease spectrum (from 68 to 431). Independent factors associated with uncertain AIL were MRI artifacts, smaller lesion size, older lesion age, and infratentorial location. Excluding uncertain cases leads to a four-fold overestimation of the diagnostic odds ratio. MRI artifacts, smaller lesion size, infratentorial location, and older lesion age are associated with uncertain AIL and should be accounted for in validation studies.

Patient-specific uncertainty calibration of deep learning-based autosegmentation networks for adaptive MRI-guided lung radiotherapy.

Rabe M, Meliadò EF, Marschner S, Belka C, Corradini S, Van den Berg CAT, Landry G, Kurz C

pubmed logopapersMay 8 2025
Uncertainty assessment of deep learning autosegmentation (DLAS) models can support contour corrections in adaptive radiotherapy (ART), e.g. by utilizing Monte Carlo Dropout (MCD) uncertainty maps. However, poorly calibrated uncertainties at the patient level often render these clinically nonviable. We evaluated population-based and patient-specific DLAS accuracy and uncertainty calibration and propose a patient-specific post-training uncertainty calibration method for DLAS in ART.&#xD;&#xD;Approach. The study included 122 lung cancer patients treated with a low-field MR-linac (80/19/23 training/validation/test cases). Ten single-label 3D-U-Net population-based baseline models (BM) were trained with dropout using planning MRIs (pMRIs) and contours for nine organs-at-riks (OARs) and gross tumor volumes (GTVs). Patient-specific models (PS) were created by fine-tuning BMs with each test patient's pMRI. Model uncertainty was assessed with MCD, averaged into probability maps. Uncertainty calibration was evaluated with reliability diagrams and expected calibration error (ECE). A proposed post-training calibration method rescaled MCD probabilities for fraction images in BM (calBM) and PS (calPS) after fitting reliability diagrams from pMRIs. All models were evaluated on fraction images using Dice similarity coefficient (DSC), 95th percentile Hausdorff distance (HD95) and ECE. Metrics were compared among models for all OARs combined (n=163), and the GTV (n=23), using Friedman and posthoc-Nemenyi tests (α=0.05).&#xD;&#xD;Main results. For the OARs, patient-specific fine-tuning significantly (p<0.001) increased median DSC from 0.78 (BM) to 0.86 (PS) and reduced HD95 from 14mm (BM) to 6.0mm (PS). Uncertainty calibration achieved substantial reductions in ECE, from 0.25 (BM) to 0.091 (calBM) and 0.22 (PS) to 0.11 (calPS) (p<0.001), without significantly affecting DSC or HD95 (p>0.05). For the GTV, BM performance was poor (DSC=0.05) but significantly (p<0.001) improved with PS training (DSC=0.75) while uncertainty calibration reduced ECE from 0.22 (PS) to 0.15 (calPS) (p=0.45).&#xD;&#xD;Significance. Post-training uncertainty calibration yields geometrically accurate DLAS models with well-calibrated uncertainty estimates, crucial for ART applications.

Improved Brain Tumor Detection in MRI: Fuzzy Sigmoid Convolution in Deep Learning

Muhammad Irfan, Anum Nawaz, Riku Klen, Abdulhamit Subasi, Tomi Westerlund, Wei Chen

arxiv logopreprintMay 8 2025
Early detection and accurate diagnosis are essential to improving patient outcomes. The use of convolutional neural networks (CNNs) for tumor detection has shown promise, but existing models often suffer from overparameterization, which limits their performance gains. In this study, fuzzy sigmoid convolution (FSC) is introduced along with two additional modules: top-of-the-funnel and middle-of-the-funnel. The proposed methodology significantly reduces the number of trainable parameters without compromising classification accuracy. A novel convolutional operator is central to this approach, effectively dilating the receptive field while preserving input data integrity. This enables efficient feature map reduction and enhances the model's tumor detection capability. In the FSC-based model, fuzzy sigmoid activation functions are incorporated within convolutional layers to improve feature extraction and classification. The inclusion of fuzzy logic into the architecture improves its adaptability and robustness. Extensive experiments on three benchmark datasets demonstrate the superior performance and efficiency of the proposed model. The FSC-based architecture achieved classification accuracies of 99.17%, 99.75%, and 99.89% on three different datasets. The model employs 100 times fewer parameters than large-scale transfer learning architectures, highlighting its computational efficiency and suitability for detecting brain tumors early. This research offers lightweight, high-performance deep-learning models for medical imaging applications.

Relevance of choroid plexus volumes in multiple sclerosis.

Krieger B, Bellenberg B, Roenneke AK, Schneider R, Ladopoulos T, Abbas Z, Rust R, Schmitz-Hübsch T, Chien C, Gold R, Paul F, Lukas C

pubmed logopapersMay 8 2025
The choroid plexus (ChP) plays a pivotal role in inflammatory processes that occur in multiple sclerosis (MS). The enlargement of the ChP in relapsing-remitting multiple sclerosis (RRMS) is considered to be an indication of disease activity and has been associated with periventricular remyelination failure. This cross-sectional study aimed to identify the relationship between ChP and periventricular tissue damage which occurs in MS, and to elucidate the role of neuroinflammation in primary progressive multiple sclerosis (PPMS). ChP volume was assessed by a novel deep learning segmentation method based on structural MRI data acquired from two centers. In total, 141 RRMS and 64 PPMS patients were included, along with 75 healthy control subjects. In addition, T1w/FLAIR ratios were calculated within periventricular bands to quantify microstructural tissue damage and to assess its relationship to ChP volume. When compared to healthy controls, ChP volumes were significantly increased in RRMS, but not in patients with PPMS. T1w/FLAIR ratios in the normal appearing white matter (NAWM) showing periventricular gradients were decreased in patients with multiple sclerosis when compared to healthy control subjects and lower T1w/FLAIR ratios radiating out from the lateral ventricles were found in patients with PPMS. A relationship between ChP volume and T1w/FLAIR ratio in NAWM was found within the inner periventricular bands in RRMS patients. A longer duration of disease was associated with larger ChP volumes only in RRMS patients. Enlarged ChP volumes were also significantly associated with reduced cortex volumes and increased lesion volumes in RRMS. Our analysis confirmed that the ChP was significantly enlarged in patients with RRMS, which was related to brain lesion volumes and which suggested a dynamic development as it was associated with disease duration. Plexus enlargement was further associated with periventricular demyelination or tissue damage assessed by T1w/FLAIR ratios in RRMS. Furthermore, we did not find an enlargement of the ChP in patients with PPMS, possibly indicating the reduced involvement of inflammatory processes in the progressive phase of MS. The association between enlarged ChP volumes and cortical atrophy in RRMS highlighted the vulnerability of structures close to the CSF.

Comparative analysis of open-source against commercial AI-based segmentation models for online adaptive MR-guided radiotherapy.

Langner D, Nachbar M, Russo ML, Boeke S, Gani C, Niyazi M, Thorwarth D

pubmed logopapersMay 8 2025
Online adaptive magnetic resonance-guided radiotherapy (MRgRT) has emerged as a state-of-the-art treatment option for multiple tumour entities, accounting for daily anatomical and tumour volume changes, thus allowing sparing of relevant organs at risk (OARs). However, the annotation of treatment-relevant anatomical structures in context of online plan adaptation remains challenging, often relying on commercial segmentation solutions due to limited availability of clinically validated alternatives. The aim of this study was to investigate whether an open-source artificial intelligence (AI) segmentation network can compete with the annotation accuracy of a commercial solution, both trained on the identical dataset, questioning the need for commercial models in clinical practice. For 47 pelvic patients, T2w MR imaging data acquired on a 1.5 T MR-Linac were manually contoured, identifying prostate, seminal vesicles, rectum, anal canal, bladder, penile bulb, and bony structures. These training data were used for the generation of an in-house AI segmentation model, a nnU-Net with residual encoder architecture featuring a streamlined single image inference pipeline, and re-training of a commercial solution. For quantitative evaluation, 20 MR images were contoured by a radiation oncologist, considered as ground truth contours (GTC) and compared with the in-house/commercial AI-based contours (iAIC/cAIC) using Dice Similarity Coefficient (DSC), 95% Hausdorff distances (HD95), and surface DSC (sDSC). For qualitative evaluation, four radiation oncologists assessed the usability of OAR/target iAIC within an online adaptive workflow using a four-point Likert scale: (1) acceptable without modification, (2) requiring minor adjustments, (3) requiring major adjustments, and (4) not usable. Patient-individual annotations were generated in a median [range] time of 23 [16-34] s for iAIC and 152 [121-198] s for cAIC, respectively. OARs showed a maximum median DSC of 0.97/0.97 (iAIC/cAIC) for bladder and minimum median DSC of 0.78/0.79 (iAIC/cAIC) for anal canal/penile bulb. Maximal respectively minimal median HD95 were detected for rectum with 17.3/20.6 mm (iAIC/cAIC) and for bladder with 5.6/6.0 mm (iAIC/cAIC). Overall, the average median DSC/HD95 values were 0.87/11.8mm (iAIC) and 0.83/10.2mm (cAIC) for OAR/targets and 0.90/11.9mm (iAIC) and 0.91/16.5mm (cAIC) for bony structures. For a tolerance of 3 mm, the highest and lowest sDSC were determined for bladder (iAIC:1.00, cAIC:0.99) and prostate in iAIC (0.89) and anal canal in cAIC (0.80), respectively. Qualitatively, 84.8% of analysed contours were considered as clinically acceptable for iAIC, while 12.9% required minor and 2.3% major adjustments or were classed as unusable. Contour-specific analysis showed that iAIC achieved the highest mean scores with 1.00 for the anal canal and the lowest with 1.61 for the prostate. This study demonstrates that open-source segmentation framework can achieve comparable annotation accuracy to commercial solutions for pelvic anatomy in online adaptive MRgRT. The adapted framework not only maintained high segmentation performance, with 84.8% of contours accepted by physicians or requiring only minor corrections (12.9%) but also enhanced clinical workflow efficiency of online adaptive MRgRT through reduced inference times. These findings establish open-source frameworks as viable alternatives to commercial systems in supervised clinical workflows.
Page 60 of 65646 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.